Adjacent cells are joined together by

Cells can also communicate with each other via direct contact, or intercellular junctions. There are differences in the ways that plant and animal and fungal cells communicate. Plasmodesmata are junctions between plant cells; whereas, animal cell contacts include tight junctions, gap junctions, and desmosomes.

Plasmodesmata

In general, long stretches of the plasma membranes of neighboring plant cells cannot touch one another because the cell wall that surrounds each cell separates them (). How then, can a plant transfer water and other soil nutrients from its roots, through its stems, and to its leaves? Such transport uses the vascular tissues (xylem and phloem) primarily. There also exist structural modifications, which we call plasmodesmata (singular = plasmodesma). Numerous channels that pass between adjacent plant cells' cell walls connect their cytoplasm, and enable transport of materials from cell to cell, and thus throughout the plant (Figure).

Adjacent cells are joined together by
A plasmodesma is a channel between two adjacent plant cells' cell walls. Plasmodesmata allow materials to pass from one plant cell's cytoplasm to an adjacent cell's cytoplasm.

Tight Junctions

A tight junction is a watertight seal between two adjacent animal cells (Figure). Proteins (predominantly two proteins called claudins and occludins) tightly hold the cells against each other.

Adjacent cells are joined together by
Tight junctions form watertight connections between adjacent animal cells. Proteins create tight junction adherence. (credit: modification of work by Mariana Ruiz Villareal)

This tight adherence prevents materials from leaking between the cells; tight junctions are typically found in epithelial tissues that line internal organs and cavities, and comprise most of the skin. For example, the tight junctions of the epithelial cells lining your urinary bladder prevent urine from leaking out into the extracellular space.

Desmosomes

Also only in animal cells are desmosomes, which act like spot welds between adjacent epithelial cells (Figure). Cadherins, short proteins in the plasma membrane connect to intermediate filaments to create desmosomes. The cadherins connect two adjacent cells and maintain the cells in a sheet-like formation in organs and tissues that stretch, like the skin, heart, and muscles.

Adjacent cells are joined together by
A desmosome forms a very strong spot weld between cells. Linking cadherins and intermediate filaments create it. (credit: modification of work by Mariana Ruiz Villareal)

Gap Junctions

Gap junctions in animal cells are like plasmodesmata in plant cells in that they are channels between adjacent cells that allow for transporting ions, nutrients, and other substances that enable cells to communicate (Figure). Structurally, however, gap junctions and plasmodesmata differ.

Adjacent cells are joined together by
A gap junction is a protein-lined pore that allows water and small molecules to pass between adjacent animal cells. (credit: modification of work by Mariana Ruiz Villareal)

Gap junctions develop when a set of six proteins (connexins) in the plasma membrane arrange themselves in an elongated donut-like configuration - a connexon. When the connexon's pores (“doughnut holes”) in adjacent animal cells align, a channel between the two cells forms. Gap junctions are particularly important in cardiac muscle. The electrical signal for the muscle to contract passes efficiently through gap junctions, allowing the heart muscle cells to contract in tandem.

To conduct a virtual microscopy lab and review the parts of a cell, work through the steps of this interactive assignment.


Page 2

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

In vivo, cardiac cells experience 3D and multidirectional stress fields that vary by cardiac region.

From: Organ-on-a-chip, 2020

OpenStaxCollege

[latexpage]

By the end of this section, you will be able to:

  • Describe the extracellular matrix
  • List examples of the ways that plant cells and animal cells communicate with adjacent cells
  • Summarize the roles of tight junctions, desmosomes, gap junctions, and plasmodesmata

You already know that a group of similar cells working together is called a tissue. As you might expect, if cells are to work together, they must communicate with each other, just as you need to communicate with others if you work on a group project. Let’s take a look at how cells communicate with each other.

Most animal cells release materials into the extracellular space. The primary components of these materials are proteins, and the most abundant protein is collagen. Collagen fibers are interwoven with carbohydrate-containing protein molecules called proteoglycans. Collectively, these materials are called the extracellular matrix ([link]). Not only does the extracellular matrix hold the cells together to form a tissue, but it also allows the cells within the tissue to communicate with each other. How can this happen?

The extracellular matrix consists of a network of proteins and carbohydrates.


Adjacent cells are joined together by

Cells have protein receptors on the extracellular surfaces of their plasma membranes. When a molecule within the matrix binds to the receptor, it changes the molecular structure of the receptor. The receptor, in turn, changes the conformation of the microfilaments positioned just inside the plasma membrane. These conformational changes induce chemical signals inside the cell that reach the nucleus and turn “on” or “off” the transcription of specific sections of DNA, which affects the production of associated proteins, thus changing the activities within the cell.

Blood clotting provides an example of the role of the extracellular matrix in cell communication. When the cells lining a blood vessel are damaged, they display a protein receptor called tissue factor. When tissue factor binds with another factor in the extracellular matrix, it causes platelets to adhere to the wall of the damaged blood vessel, stimulates the adjacent smooth muscle cells in the blood vessel to contract (thus constricting the blood vessel), and initiates a series of steps that stimulate the platelets to produce clotting factors.

Cells can also communicate with each other via direct contact, referred to as intercellular junctions. There are some differences in the ways that plant and animal cells do this. Plasmodesmata are junctions between plant cells, whereas animal cell contacts include tight junctions, gap junctions, and desmosomes.

In general, long stretches of the plasma membranes of neighboring plant cells cannot touch one another because they are separated by the cell wall that surrounds each cell ([link]b). How then, can a plant transfer water and other soil nutrients from its roots, through its stems, and to its leaves? Such transport uses the vascular tissues (xylem and phloem) primarily. There also exist structural modifications called plasmodesmata (singular = plasmodesma), numerous channels that pass between cell walls of adjacent plant cells, connect their cytoplasm, and enable materials to be transported from cell to cell, and thus throughout the plant ([link]).

A plasmodesma is a channel between the cell walls of two adjacent plant cells. Plasmodesmata allow materials to pass from the cytoplasm of one plant cell to the cytoplasm of an adjacent cell.


Adjacent cells are joined together by

A tight junction is a watertight seal between two adjacent animal cells ([link]). The cells are held tightly against each other by proteins (predominantly two proteins called claudins and occludins).

Tight junctions form watertight connections between adjacent animal cells. Proteins create tight junction adherence. (credit: modification of work by Mariana Ruiz Villareal)


Adjacent cells are joined together by

This tight adherence prevents materials from leaking between the cells; tight junctions are typically found in epithelial tissues that line internal organs and cavities, and comprise most of the skin. For example, the tight junctions of the epithelial cells lining your urinary bladder prevent urine from leaking out into the extracellular space.

Also found only in animal cells are desmosomes, which act like spot welds between adjacent epithelial cells ([link]). Short proteins called cadherins in the plasma membrane connect to intermediate filaments to create desmosomes. The cadherins join two adjacent cells together and maintain the cells in a sheet-like formation in organs and tissues that stretch, like the skin, heart, and muscles.

A desmosome forms a very strong spot weld between cells. It is created by the linkage of cadherins and intermediate filaments. (credit: modification of work by Mariana Ruiz Villareal)


Adjacent cells are joined together by

Gap junctions in animal cells are like plasmodesmata in plant cells in that they are channels between adjacent cells that allow for the transport of ions, nutrients, and other substances that enable cells to communicate ([link]). Structurally, however, gap junctions and plasmodesmata differ.

A gap junction is a protein-lined pore that allows water and small molecules to pass between adjacent animal cells. (credit: modification of work by Mariana Ruiz Villareal)


Adjacent cells are joined together by

Gap junctions develop when a set of six proteins (called connexins) in the plasma membrane arrange themselves in an elongated donut-like configuration called a connexon. When the pores (“doughnut holes”) of connexons in adjacent animal cells align, a channel between the two cells forms. Gap junctions are particularly important in cardiac muscle: The electrical signal for the muscle to contract is passed efficiently through gap junctions, allowing the heart muscle cells to contract in tandem.

Link to Learning


Adjacent cells are joined together by

To conduct a virtual microscopy lab and review the parts of a cell, work through the steps of this interactive assignment.

Which of the following are found only in plant cells?

  1. gap junctions
  2. desmosomes
  3. plasmodesmata
  4. tight junctions

The key components of desmosomes are cadherins and __________.

  1. actin
  2. microfilaments
  3. intermediate filaments
  4. microtubules

How does the structure of a plasmodesma differ from that of a gap junction?

They differ because plant cell walls are rigid. Plasmodesmata, which a plant cell needs for transportation and communication, are able to allow movement of really large molecules. Gap junctions are necessary in animal cells for transportation and communication.

Explain how the extracellular matrix functions.

The extracellular matrix functions in support and attachment for animal tissues. It also functions in the healing and growth of the tissue.

desmosome linkages between adjacent epithelial cells that form when cadherins in the plasma membrane attach to intermediate filaments extracellular matrix material (primarily collagen, glycoproteins, and proteoglycans) secreted from animal cells that provides mechanical protection and anchoring for the cells in the tissue gap junction channel between two adjacent animal cells that allows ions, nutrients, and low molecular weight substances to pass between cells, enabling the cells to communicate plasmodesma (plural = plasmodesmata) channel that passes between the cell walls of adjacent plant cells, connects their cytoplasm, and allows materials to be transported from cell to cell tight junction firm seal between two adjacent animal cells created by protein adherence