Quando uma raiz quadrada é elavada a uma pontencia

A potenciação é uma operação matemática que representa a multiplicação sucessiva de um número por ele mesmo. Ao multiplicar o 3 por ele mesmo 4 vezes, isso pode ser representado pela potência 3 elevada a 4: 34.

 Essa operação possui propriedades importantes que facilitam o cálculo das potências. Assim como a multiplicação possui a divisão como operação inversa, a potenciação possui a radiciação como operação inversa.

Cada elemento da potenciação recebe um nome específico:

an = b

a → base

n→ expoente

b→ potência

Leia também: Potenciação e radiciação de frações

Como ler uma potência?

Quando uma raiz quadrada é elavada a uma pontencia
Potenciação é uma operação matemática.

Saber ler uma potência é uma tarefa importante. A leitura é sempre feita começando pelo número que está na base elevado ao número que está no expoente, como nos exemplos a seguir:

Exemplos:

a) 4³ → Quatro elevado a três, ou quatro elevado à terceira potência, ou quatro elevado ao cubo.

b) 34 → Três elevado a quatro, ou três elevado à quarta potência.

c) (-2)¹ → Menos dois elevado a um, ou menos dois elevado à primeira potência.

d) 8² → Oito elevado a dois, ou oito elevado à segunda potência, ou oito elevado ao quadrado.

As potências de expoente 2 podem ser chamadas também de potências elevadas ao quadrado, e as potências de grau 3 podem ser chamadas de potências elevadas ao cubo, como nos exemplos anteriores.

Cálculo de potências

Para encontrar o valor de uma potência, precisamos realizar as multiplicações como nos exemplos a seguir:

a) 3²= 3 · 3 = 9

b) 5³= 5·5·5 = 125

c) 106 = 10 · 10 · 10 · 10 · 10 · 10 = 1 000 000

Existem alguns tipos específicos de potência.

1º caso – Quando a base for diferente de zero, podemos afirmar que todo número elevado a zero é igual a 1.

Exemplos:

a) 100=1

b) 12930=1

c) (-32)0=1

d) 80=1

2º caso - Todo número elevado a 1 é ele mesmo.

Exemplos:

a) 9¹ = 9

b) 12¹ = 12

c) (-213)¹= - 213

d) 0¹ = 0

3º caso - 1 elevado a qualquer potência é igual a 1.

Exemplos:

a) 1²¹ = 1

b) 1³ = 1

c) 1500=1

4º caso - Base de uma potenciação negativa

Quando a base é negativa, separamos em dois casos: quando o expoente for ímpar, a potência será negativa; quando o expoente for par, a resposta será positiva.

Exemplos:

a) (-2)³ = (-2) · (-2) · (-2) = - 8 → Note que o expoente 3 é ímpar, logo a potência é negativa.

b) (-2)4= (-2) · (-2) · (-2) · (-2) = 16 → Note que o expoente 4 é par, por isso a potência é positiva.

Leia também: Potências com expoente negativo

Potência com expoente negativo

Para calcular a potência com expoente negativo, escrevemos o inverso da base e trocamos o sinal do expoente.

Propriedades da potenciação

Além dos tipos de potenciação mostrados, a potenciação possui propriedades importantes para facilitar o cálculo de potência.

→ 1ª propriedade – Multiplicação de potências de mesma base

Ao realizarmos uma multiplicação de potências de mesma base, conservamos a base e somamos os expoentes.

Exemplos:

a) 2 23 = 24+3=27

b) 5³ · 55 · 52= 53+5+2 = 510

→ 2ª propriedade – Divisão de potências de mesmo base

Quando encontramos uma divisão de potência de mesma base, conservamos a base e subtraímos os expoentes.

Exemplos:

a) 37 : 35 = 37-5 = 32

b) 23 : 26 = 23-6 = 2-3

→ 3ª propriedade – Potência de potência

Ao calcular a potência de uma potência, podemos conservar a base e multiplicar os expoentes.

Exemplos:

a) (5²)³ = 52·3 = 56

b) (35)4 = 35·4 = 3 20

→ 4ª propriedade – Potência de um produto

Quando há uma multiplicação de dois números elevada a um expoente, podemos elevar cada um desses números ao expoente.

Exemplos:

a)(5 · 7)3 = 53 · 73

b)( 6·12)8 = 68 · 128

→ 5ª propriedade – Potência do quociente

Para calcular potências de um quociente ou até mesmo de uma fração, o modo de realizar é muito parecido com a quarta propriedade. Se há uma divisão elevada a um expoente, podemos calcular a potência do dividendo e do divisor separadamente.

a) (8:5)³ = 8³ : 5³

 

 

Potenciação e radiciação

A radiciação é a operação inversa da potenciação, ou seja, ela desfaz o que foi feito pela potência. Por exemplo, ao calcularmos a raiz quadrada de 9, estamos procurando o número elevado ao quadrado que resulta em 3. Então, para entender uma delas, é fundamental que se domine a outra. Em equações, também é bastante comum o uso da radiciação para eliminar uma potência de uma incógnita, e também o contrário, ou seja, usarmos potenciação para eliminar a raiz quadrada de uma incógnita.

Exemplo

- Calcule o valor de x, sabendo que x³ = 8.

Para calcular o valor de x, é necessário realizar a operação inversa da potenciação, ou seja, a radiciação. Na realidade, estamos buscando qual é o número que, ao ser elevado ao cubo, tem como resultado o número 8.

Essa relação entre a radiciação e a potenciação torna fundamental dominar as regras de potenciação para avançar o aprendizado sobre a radiciação.

Leia também: Como calcular raízes usando potências?

Exercícios resolvidos

1) (PUC-RIO) O maior número abaixo é:

a) 331

b)810

c)168

d)816

e)2434

Resolução:

Realizar a comparação calculando cada um deles seria uma tarefa difícil, então vamos simplificar as alternativas,

a) 331 → já está simplificada

b) 8 = 2³ → (2³)10 = 230

c) 16 = 24 → (24)8 = 232

d) 81 = 34 → (34)6 = 324

e) 243=35 → (35)4 = 320

Logo, a maior das potências é a letra A.

2) A simplificação da expressão [310: (35. 3)2]- é igual a:

a)3-4

b)34

c)30

d)3²

e)3-2

Resolução:

[310: (35. 3)2]-2

[310: (36)2]-2

[310: 312]-2

[3-2]-2

34

Letra B.   

/pt/algebra/o-que-e-a-radiciacao/content/

Como encontrar a raiz de uma potência

Vamos ver como calcular a raiz quadrada e cúbica de uma potência? É mais fácil do que parece! Veja o vídeo para entender melhor.

Se você tem dúvidas sobre a radiciação, confira aqui como ela funciona.

Para encontrar a raiz de uma potência, você só tem que seguir os seguintes passos: 

1. Separe a base

Quando uma raiz quadrada é elavada a uma pontencia

2. Divida a expoente da potência pelo índice

Quando uma raiz quadrada é elavada a uma pontencia

3. Deixe o radicando elevado ao resultado da divisão entre o expoente e o índice.

Quando uma raiz quadrada é elavada a uma pontencia

Agora que você já conhece as bases da álgebra, que tal aprender a resolver expressões algebraicas

Continue aprendendo com a gente!

/pt/algebra/pratica/content/

A radiciação é a operação matemática inversa da potenciação, assim como a divisão é a operação inversa da multiplicação. Essa operação é representada pelo símbolo √, conhecido como radical, e a raiz de um número é representada por \(\sqrt[n]{a}\ =\ b\). Assim, podemos calcular a raiz enésima de um número utilizando o seguinte raciocínio: a raiz enésima de a é o número que elevado a n é igual a a. Além disso, a radiciação possui propriedades importantes que auxiliam na resolução de problemas envolvendo-a.  

Leia também: Potenciação e radiciação de frações

Videoaula sobre radiciação

Como representar a radiciação?

Para representar uma operação de radiciação, utilizamos o símbolo √, conhecido como radical. Então, a raiz de um número é representada por:

\(\sqrt[n]{a}\ =\ b\)

Essa sentença é lida como “raiz enésima de a é igual a b”. Cada um dos elementos recebe nome específico. São eles:

  • √: radical.

  • n: índice.

  • a: radicando.

  • b: raiz.

Observação: Quando o índice é igual a 2, não é necessário que o algarismo 2 conste. Ou seja:

\(\sqrt[2]{a}=\sqrt a\)

A radiciação e a potenciação são conhecidas como operações inversas. Assim, para calcular a radiciação, é fundamental saber resolver potenciações. Quando representamos a raiz enésima de a, encontramos como resposta o número b. Para que b seja raiz n de a, temos que:

\(\sqrt[n]{a}=b\rightarrow b^n=a\)

Logo, estamos procurando qual é o número b que elevado ao índice n é igual ao radicando a.

Exemplo 1:

\(\sqrt[2]{25}=5\rightarrow5^2=25\)

Exemplo 2:

\(\sqrt[3]{8}=2\rightarrow2^3=8\)

Exemplo 3:

\(\sqrt[5]{1024}=4\rightarrow4^5=1024\)

Propriedades da radiciação

As propriedades das operações matemáticas são ferramentas que auxiliam na resolução e na simplificação de problemas envolvendo uma operação, e com a radiciação não é diferente. É útil, portanto, dominar algumas propriedades da radiciação.

→ A raiz enésima de a elevado a n é igual ao próprio a

Se queremos calcular a raiz enésima de um número a elevado a n, ou seja, quando o expoente do número é igual ao índice da raiz, a raiz é o próprio número a.

\(\sqrt[n]{a^n}=a\)

→ A raiz do produto é igual ao produto das raízes

Quando o radicando é a multiplicação entre dois números, a raiz do produto é igual ao produto das raízes.

\(\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot\sqrt[n]{b}\)

→ A raiz do quociente é igual ao quociente das raízes

Essa propriedade é equivalente à anterior, porém para o caso de divisão. Quando há uma divisão entre dois números no radicando, a raiz do quociente é igual ao quociente das raízes.

\(\sqrt[n]{a∶b}=\sqrt[n]{a}∶\sqrt[n]{b}\)

Além disso, essa propriedade é válida para frações, já que a fração é uma divisão.

\(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)

→ Multiplicação e divisão do índice com o expoente

Podemos multiplicar ou dividir o radical e o expoente do radicando por um mesmo número.

\(\sqrt[n]{a^m}=\sqrt[n\cdot b]{a^{m\cdot b}}\)

\(\sqrt[n]{a^m}=\sqrt[n:b]{a^{m:b}}\)

→ Raiz de uma raiz

Para resolver a raiz de uma raiz, podemos multiplicar os índices dessas raízes.

\(\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\cdot m]{a}\)

→ Potência de uma raiz

Quando há uma potenciação com a raiz, temos que:

\(\left(\sqrt[n]{a}\right)^b=\sqrt[n]{a^b}\)

→ Transformação de uma radiciação em uma potenciação

Podemos reescrever a radiciação de um número como uma potenciação.

\(\sqrt[n]{a^m}=a^\frac{m}{n}\)

Confira nossa videoaula: Propriedades de potência

Simplificação de radicais

Quando a raiz não é um número exato, é possível simplificar o radical, ou seja, escrever o radical da forma mais simples possível. Para fazer a simplificação, é necessário fatorar esse número e utilizar as propriedades da radiciação apresentadas anteriormente para representar a radiciação da forma mais simples possível.

Exemplo:

Simplifique \(\sqrt{392}\):

Resolução:

Primeiramente, é necessário realizar a fatoração de 392:

Como queremos calcular a raiz quadrada, agruparemos, quando possível, os números como potência de 2:

392 = \(2^2\cdot2\cdot7^2\)

Assim, temos que:

\(\sqrt{392}=\sqrt{2^2\cdot2\cdot7^2}\)

Utilizando as propriedades da radiciação, sabemos que a raiz do produto é igual ao produto das raízes:

\(\sqrt{392}=\sqrt{2^2}\cdot\sqrt2\cdot\sqrt{7^2}\)

Vale ressaltar que quando o índice não aparece, o seu valor é 2. E quando o índice e o expoente do radicando são os mesmos, a raiz é igual ao radicando. Ou seja:

\(\sqrt{392}=2\cdot\sqrt2\cdot7\)

Então, temos que:

\(\sqrt{392}=14\sqrt2\)

Logo, \(14\sqrt2\) é a forma simplificada da \(\sqrt{392}\).

Operações com radicais

→ Adição e subtração

Quando o radical é o mesmo, para somar ou subtrair a raiz, conservamos o radical e somamos os coeficientes.

Exemplo:

\(4\sqrt2+3\sqrt2=7\sqrt2\)

Quando o radical é diferente, não é possível realizar a operação. Dessa forma, é necessário obter um valor aproximado ou exato para a raiz antes de fazer o cálculo.

Exemplo:

\(5\sqrt3-2\sqrt2\)

\(5\cdot1,7-2\cdot1,4\)

\(8,5-2,8\)

\(5,7\)

→ Multiplicação e divisão

Quando o índice é o mesmo, podemos realizar a multiplicação ou a divisão e conservar o radical.

Exemplo:

\(\sqrt[3]{5}\cdot\sqrt[3]{2}=\sqrt[3]{2\cdot5}=\sqrt[3]{10}\)

Quando o índice é diferente, de início igualamos os índices e depois realizamos a multiplicação/divisão e conservamos o radical.

Exemplo:

\(\sqrt[3]{16}∶\sqrt[2]{2}\)

 Para igualar os índices, temos que:

\(\sqrt[3\cdot2]{{16}^2\ }:\sqrt[2\cdot3]{2^3}\)

\(\sqrt[6]{{16}^2∶2^3}\)

\(\sqrt[6]{256∶8}\)

\(\sqrt[6]{32}\)

Exercícios resolvidos sobre radiciação

Questão 1

(Fauel) O número \(\sqrt[3]{2160}\) pode ser escrito na forma simplificada. Assinale a alternativa que apresenta o número simplificado.

A) 50

B) \( 6\sqrt[3]{10}\)

C) \( 10\sqrt[3]{6}\)

D) 720

Resolução:

Alternativa B

Fazendo a fatoração:

Como queremos a raiz cúbica, agruparemos de 3 em 3:

2160 = \(2^3\cdot2\cdot3^3\cdot5\)

Logo:

\(\sqrt[3]{2160}=\sqrt[3]{2^3\cdot2\cdot3^3\cdot5}\)

\(\sqrt[3]{2160}=2\cdot3\sqrt[3]{2\cdot5}\)

\(\sqrt[3]{2160}=6\sqrt[3]{10}\)

Questão 2

Qual é a raiz cúbica de 4.096?

A) 26

B) 24

C) 16

D) 14

Resolução:

Alternativa C

Para encontrar a raiz cúbica de 4.096, devemos fatorar esse número:

Como nós queremos a raiz cúbica, agruparemos de 3 em 3. Assim, obtemos 4096 = \(2^3\cdot2^3\cdot2^3\cdot2^3\).

Portanto:

\(\sqrt[3]{4096}=\sqrt[3]{2^3\cdot2^3\cdot2^3\cdot2^3}\)

\(\sqrt[3]{4096}=2\cdot2\cdot2\cdot2\)

\(\sqrt[3]{4096}=16\)