Select the approaches that are seen as ways for significantly increasing performance in the future

  1. Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):741–56.

    Article  PubMed  Google Scholar 

  2. Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381–400.

    Article  PubMed  Google Scholar 

  3. Rumpf MC, Lockie RG, Cronin JB, Jalilvand F. Effect of different sprint training methods on sprint performance over various distances: a brief review. J Strength Cond Res. 2016;30(6):1767–85.

    Article  PubMed  Google Scholar 

  4. Haugen T, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432–41.

    Article  PubMed  Google Scholar 

  5. Haugen T, Solberg PA, Morán-Navarro R, Breitschädel F, Hopkins W, Foster C. Peak age and performance progression in world-class track-and-field athletes. Int J Sports Physiol Perform. 2018;13(9):1122–9.

    Article  PubMed  Google Scholar 

  6. Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641–56.

    Article  PubMed  Google Scholar 

  7. Tønnessen E, Sylta Ø, Haugen T, Hem E, Svendsen I, Seiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One. 2014;9:e101796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tønnessen E, Svendsen I, Rønnestad B, Hisdal J, Haugen T, Seiler S. The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform. 2015;10(1):29–38.

    Article  PubMed  Google Scholar 

  9. Solli GS, Tønnessen E, Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee J. Insights to Jamaican sprinting success. Stephen Francis & Glen Mills training philosophy. http://riggberger.dinstudio.se/files/Jamaican_Sprint_Secrets.pdf. Assessed 15 July 2019.

  11. Banta R. The sprinter’s compendium: Vervante; 2017.

  12. Carlo Vittori and training of Pietro Mennea. https://www.runnerprogram.com/product/carlo-vittori-training-pietro-mennea/. Assessed 15 July 2019.

  13. Francis C. Structure of training for speed (ebook). https://www.amazon.com/Structure-Training-Charlie-Francis-Concepts-ebook/dp/B00BG9F8UG. Assessed 15 July 2019.

  14. Francis C. The Charlie Francis training system (ebook). https://www.amazon.com/Charlie-Francis-Training-System-ebook/dp/B008ZK0WR8. Assessed 15 July 2019.

  15. United Kingdom Athletics: classifying sprint training methods (written by Khmel M & Lester T). http://ucoach.com/assets/uploads/files/Classifying_Sprint_Training_Methods_FINAL.pdf. Assessed 15 July 2019.

  16. United Kingdom Athletics. Sprints and hurdles ADM V1.0. http://ucoach.com/assets/uploads/files/SH_UKA_ADM_V1.1_FINAL.pdf. Assessed 15 July 2019.

  17. Dan Pfaff. Donovan Bailey training program. https://www.runnerprogram.com/product/donovan-bailey-training-dan-pfaff/. Assessed 15 July 2019.

  18. Loren Seagrave. Planning and periodization: preparing for Moscow 2013. http://ucoach.com/assets/uploads/files/ESHC12_Loren_Seagrave.pdf. Assessed 15 July 2019.

    Google Scholar 

  19. Volkov NI, Lapin VI. Analysis of the velocity curve in sprint running. Med Sci Sports. 1979;11(4):332–7.

    CAS  PubMed  Google Scholar 

  20. Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A Rev Sports Med. 1992;13(6):376–92.

    Article  CAS  Google Scholar 

  21. Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3(8):689–99.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships. J Strength Cond Res. 2013;27(4):885–92.

    Article  PubMed  Google Scholar 

  23. Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  24. Haugen T, McGhie D, Ettema G. Sprint running: from fundamental mechanics to practice – a review. Eur J Appl Physiol. 2019;119(6):1273–87.

    Article  PubMed  Google Scholar 

  25. Scientific report on the second IAAF World Championships in athletics, Rome 1987. https://www.iaaf.org/about-iaaf/documents/research. Assessed 15 July 2019.

  26. Bruggemann G, Glad B. Time analysis of the sprint events. Scientific research project at the games of the XXXIV Olympiad Seoul 1988, IAAF supplement 1990.

  27. Ae M, Ito A, Suzuki M. The men’s 100 meters. Scientific research project at the III World Championship in athletics, Tokyo 1991. New Stud Athl. 1992;7(1):47–52.

    Google Scholar 

  28. Kersting U. Biomechanical analysis of the sprinting events. In: Brüggemann G, editor. Biomechanical research project Athens 1997 final report: Meyer & Meyer Sport Ldt; 1999.

  29. Ferro A, Riveral A, Pagola I, Ferreruela M, Martin A, Rocandio V. A kinematic study of the sprint events at the 1999 World Championships in athletics in Sevilla. In: 20th International Symposium on Biomechanics in Sports; 2002.

    Google Scholar 

  30. Biomechanics research project in the IAAF World Championships Daegu 2011. https://www.jaaf.or.jp/pdf/about/resist/t-f/Daegu2011.pdf. Assessed 15 July 2019.

  31. Graubner R, Nixdorf E. Biomechanical analysis of the sprint and hurdles events at the 2009 IAAF World Championships in athletics. New Stud Athl. 2011;26:19–53.

    Google Scholar 

  32. Bissas A, Walker J, Tucker C, Paradisis G, Merlino S. Biomechanical report for the IAAF World Championships in London, 2017. https://www.iaaf.org/about-iaaf/documents/research#collapse2017-iaaf-world-championships-biomechanics-st. Assessed 15 July 2019.

    Google Scholar 

  33. Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):1680–8.

    Article  PubMed  Google Scholar 

  34. Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–30.

    Article  PubMed  Google Scholar 

  35. Haugen T, Breitschädel F, Seiler S. Sprint mechanical variables in elite athletes: are force-velocity profiles sport specific or individual? PLoS One. 2019;14(7):e0215551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seiler S, De Koning JJ, Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952-2006. Med Sci Sports Exerc. 2007;39(3):534–40.

    Article  PubMed  Google Scholar 

  37. Haugen T, Paulsen G, Seiler S, Sandbakk O. New records in human power. Int J Sports Physiol Perform. 2018;13(6):678–86.

    Article  PubMed  Google Scholar 

  38. Rabita G, Dorel S, Slawinski J, Sàez-de-Villarreal E, Couturier A, Samozino P, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583–94.

    Article  CAS  PubMed  Google Scholar 

  39. Ettema G, McGhie D, Danielsen J, Sandbakk Ø, Haugen T. On the existence of step-to-step breakpoint transitions in accelerated sprinting. PLoS One. 2016;11(7):e0159701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Haugen T, Danielsen J, Alnes LO, McGhie D, Sandbakk O, Ettema G. On the importance of “front-side mechanics” in athletics sprinting. Int J Sports Physiol Perform. 2018;13(4):420–7.

    Article  PubMed  Google Scholar 

  41. Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35(9):755–61.

    Article  CAS  PubMed  Google Scholar 

  42. Nagahara R, Zushi K. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. J Sports Med Phys Fitness. 2017;57(12):1572–8.

    PubMed  Google Scholar 

  43. Kunz H, Kaufmann DA. Biomechanical analysis of sprinting: decathletes versus champions. Br J Sports Med. 1981;15(3):177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mann R, Herman J. Kinematic analysis of Olympic sprint performance: men’s 200 meters. Int J Sport Biomech. 1985;1(2):151–62.

    Article  Google Scholar 

  45. Hunter JP, Marshall RN, McNair PJ. Segment-interaction analysis of the stance limb in sprint running. J Biomech. 2004;37(9):1439–46.

    Article  PubMed  Google Scholar 

  46. Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31–43.

    Article  PubMed  Google Scholar 

  47. Kugler F, Janshen L. Body position determines propulsive forces in accelerated running. J Biomech. 2010;43(2):343–8.

    Article  CAS  PubMed  Google Scholar 

  48. Colyer SL, Nagahara R, Salo AIT. Kinetic demands of sprinting shift across the acceleration phase: novel analysis of entire force waveforms. Scand J Med Sci Sports. 2018;28(7):1784–92.

    Article  CAS  PubMed  Google Scholar 

  49. Colyer SL, Nagahara R, Takai Y, Salo AIT. How sprinters accelerate beyond the velocity plateau of soccer players: waveform analysis of ground reaction forces. Scand J Med Sci Sports. 2018;28(12):2527–35.

    Article  PubMed  Google Scholar 

  50. Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104–10.

    Article  PubMed  Google Scholar 

  51. Bezodis NE, Willwacher, Salo AIT. The biomechanics of the track and field sprint start: a narrative review. Sports Med. 2019; [Epub ahead of print].

  52. Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med. 2001;31(6):409–25.

    Article  CAS  PubMed  Google Scholar 

  53. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49–94.

    Article  CAS  PubMed  Google Scholar 

  54. Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757–77.

    Article  PubMed  Google Scholar 

  55. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–94.

    Article  PubMed  Google Scholar 

  56. Brocherie F, Millet GP, Morin JB, Girard O. Mechanical alterations to repeated treadmill sprints in normobaric hypoxia. Med Sci Sports Exerc. 2016;48(8):1570–9.

    Article  PubMed  Google Scholar 

  57. Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc. 2001;33(2):326–33.

    Article  CAS  PubMed  Google Scholar 

  58. Girard O, Micallef JP, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol. 2011;111(1):125–34.

    Article  PubMed  Google Scholar 

  59. Girard O, Brocherie F, Morin JB, Millet GP. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study. J Sports Sci. 2016;34(12):1190–8.

    Article  PubMed  Google Scholar 

  60. Girard O, Brocherie F, Tomazin K, Farooq A, Morin JB. Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints. J Biomech. 2016;49(9):1490–7.

    Article  CAS  PubMed  Google Scholar 

  61. Morin JB, Jeannin T, Chevallier B, Belli A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. 2006;27(2):158–65.

    Article  PubMed  Google Scholar 

  62. Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport. 2004;7(3):302–13.

    Article  CAS  PubMed  Google Scholar 

  63. Tucker R, Santos-Concejero J, Collins M. The genetic basis for elite running performance. Br J Sports Med. 2013;47(9):545–9.

    Article  PubMed  Google Scholar 

  64. Lucia A, Oliván J, Gómez-Gallego F, Santiago C, Montil M, Foster C. Citius and longius (faster and longer) with no alpha-actinin-3 in skeletal muscles? Br J Sports Med. 2007;41(9):616–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):1103–26.

    Article  PubMed  Google Scholar 

  66. Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a ‘speed gene’: ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol. 2019;119(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  67. Malina RM, Bouchard C, Beunen G. Human growth: selected aspects of current research on well-nourished children. Annu Rev Anthropol. 1988;17:187–219.

    Article  Google Scholar 

  68. Malina RM, Bouchard C, Bar-Or O. Growth, maturation and physical activity. 2nd ed. Champaign: Human Kinetics; 2004.

    Google Scholar 

  69. Tønnessen E, Svendsen I, Olsen IC, Guttormsen A, Haugen T. Performance development in adolescent track and field athletes according to age, sex and sport discipline. PLoS One. 2015;10:e0129014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hollings SC, Hopkins WG, Hume PA. Age at peak performance of successful track and field athletes. Int J Sports Sci Coach. 2014;9(4):651–62.

    Article  Google Scholar 

  71. Allen SV, Hopkins WG. Age of peak competitive performance of elite athletes: a systematic review. Sports Med. 2015;45(10):1431–41.

    Article  PubMed  Google Scholar 

  72. Haugen T, Tønnessen E, Seiler S. 9.58 and 10.49: nearing the citius end for 100-m? Invited commentary. Int J Sports Physiol Perform. 2015;10(2):269–72.

    Article  PubMed  Google Scholar 

  73. Boccia G, Moisè P, Franceschi A, Trova F, Panero D, La Torre A, et al. Career performance trajectories in track and field jumping events from youth to senior success: the importance of learning and development. PLoS One. 2017;12:e0170744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001;86(2):724–731.

    Article  CAS  Google Scholar 

  75. Korhonen MT, Cristea A, Alen M, Hakkinen K, Sipila S, Mero A, et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol. 2006;101(3):906–17.

    Article  CAS  PubMed  Google Scholar 

  76. Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol. 2016;121(4):982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hollings SC, Hume PA, Hopkins WG. Relative-age effect on competition outcomes at the World Youth and World unior Athletics Championships. Eur J Sport Sci. 2014;14(1):456–61.

    Article  Google Scholar 

  78. Hollings SC, Mallett CJ, Hume PA. The transition from elite junior track-and-field athlete to successful senior athlete: why some do, why others don’t. Int J Sports Sci Coach. 2014;9(3):457–71.

    Article  Google Scholar 

  79. Boccia G, Brustio PR, Moisè P, Franceschi A, La Torre A, Schena F, et al. Elite national athletes reach their peak performance later than non-elite in sprints and throwing events. J Sci Med Sport. 2019;22(3):342–7.

    Article  PubMed  Google Scholar 

  80. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, De Ste Croix MB, Williams CA, et al. Long-term athletic development, part 2: barriers to success and potential solutions. J Strength Cond Res. 2015;29(5):1451–64.

    Article  PubMed  Google Scholar 

  81. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, De Ste Croix MB, Williams CA, et al. Long-term athletic development- part 1: a pathway for all youth. J Strength Cond Res. 2015;29(5):1439–50.

    Article  PubMed  Google Scholar 

  82. Helsen WF, Starkes JL, Hodges NJ. Team sports and the theory of deliberate practice. J Sport Exerc Psychol. 1998;20(1):12–34.

    Article  Google Scholar 

  83. Ericson KA, Krampe RT, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Physiol Rec. 1993;100(3):363–406.

    Google Scholar 

  84. Usain Bolt biography. https://www.biography.com/athlete/usain-bolt. Assessed 10 Oct 2019.

  85. Delorme TL, Watkins AL. Techniques of progressive resistance exercise. Arch Phys Med. 1948;29(5):263–73.

    CAS  PubMed  Google Scholar 

  86. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–80.

    Article  PubMed  Google Scholar 

  87. Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med. 2017;51(5):428–35.

    Article  PubMed  Google Scholar 

  88. Haugen T, Danielsen J, McGhie D, Sandbakk Ø, Ettema G. Kinematic asymmetry in the stride cycle is not associated with performance and injuries in athletic sprinters. Scand J Med Sci Sports. 2018;28(3):1001–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sale D, MacDougall D. Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci. 1981;6(2):87–92.

    CAS  PubMed  Google Scholar 

  90. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.

    Article  PubMed  Google Scholar 

  91. Stone MH, Potteiger JA, Pierce KC, Proulx CM, O'Bryant HS, Johnson RL, et al. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J Strength Cond Res. 2000;14(3):332–7.

    Google Scholar 

  92. Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242–50.

    Article  PubMed  Google Scholar 

  93. Matveyev LP. Periodisierung des sportlichen trainings. 2nd ed. Berlin: Bartels & Wernitz; 1975.

    Google Scholar 

  94. Verkhoshansky Y. Programming and organization of training. Livonia: Sportivny Press; 1988.

    Google Scholar 

  95. Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):49–56.

    Article  PubMed  Google Scholar 

  96. Seiler KS. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–91.

    Article  PubMed  Google Scholar 

  97. Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualised and specific training. Int J Sports Physiol Perform. 2016;11(2):267–72.

    Article  PubMed  Google Scholar 

  98. Bosco C, Tihanyi J, Viru A. Relationships between field fitness test and basal serum testosterone and cortisol levels in soccer players. Clin Physiol. 1996;16(3):317–22.

    Article  CAS  PubMed  Google Scholar 

  99. Epstein RH. Aroused: a history of hormones and how they control just about everything. 1st ed: WW Norton & Company; 2018.

  100. Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol. 2017;122(3):549–58.

    Article  CAS  PubMed  Google Scholar 

  101. Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–58.

    Article  CAS  PubMed  Google Scholar 

  102. Cross MR, Brughelli M, Samozino P, Morin JB. Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Med. 2017;47(7):1255–69.

    Article  PubMed  Google Scholar 

  103. Rakovic E, Paulsen G, Helland C, Eriksrud O, Haugen T. The effect of individualised sprint training in elite female team sport athletes: a pilot study. J Sports Sci. 2018;36(24):2802–8.

    Article  PubMed  Google Scholar 

  104. Lai A, Schache AG, Brown NA, Pandy MG. Human ankle plantar flexor muscle-tendon mechanics and energetics during maximum acceleration sprinting. J R Soc Interface. 2016;13(121).

    Article  PubMed Central  PubMed  Google Scholar 

  105. Miller RH, Umberger BR, Caldwell GE. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship. J Biomech. 2012;45(8):1406–13.

    Article  PubMed  Google Scholar 

  106. Weyand PG, Sandell RF, Prime DN, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108(4):950–61.

    Article  PubMed  Google Scholar 

  107. Helland C, Haugen T, Rakovic E, Eriksrud O, Seynnes O, Mero AA, et al. Force-velocity profiling of sprinting athletes: single-run vs. multiple-run methods. Eur J Appl Physiol. 2019;119(2):465–73.

    Article  PubMed  Google Scholar 

  108. Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  109. Tønnessen E, Shalfawi S, Haugen T, Enoksen E. The effect of 40-m repeated sprint training on maximum sprinting speed, repeated sprint endurance, vertical jump and aerobic capacity in young elite male soccer players. J Strength Cond Res. 2011;25(9):2364–70.

    Article  PubMed  Google Scholar 

  110. Haugen T, Tønnessen E, Leirstein S, Hem E, Seiler S. Not quite so fast: effect of training at 90% sprint speed on maximal and repeated sprint ability in soccer players. J Sports Sci. 2014;32(20):1979–86.

    Article  PubMed  Google Scholar 

  111. Haugen T, Tønnessen E, Øksenholt Ø, Haugen FL, Paulsen G, Enoksen E, Seiler S. Sprint conditioning of soccer players: effects of training intensity and technique supervision. PLoS One. 2015;10:e0121827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Jakeman JR, McMullan J, Babraj JA. Efficacy of a four-week uphill sprint training intervention in field hockey players. J Strength Cond Res. 2016;30(10):2761–6.

    Article  PubMed  Google Scholar 

  113. Kavaliauskas M, Kilvington R, Babraj J. Effects of in-season uphill sprinting on physical characteristics in semi-professional soccer players. J Sports Med Phys Fitness. 2017;57(3):165–70.

    PubMed  Google Scholar 

  114. Cross MR, Lahti J, Brown SR, Chedati M, Jimenez-Reyes P, Samozino P, et al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018;13(4):e0195477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lockie RG, Murphy AJ, Spinks CD. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J Strength Cond Res. 2003;17(4):760–7.

    PubMed  Google Scholar 

  116. Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):1069–77.

    Article  PubMed  Google Scholar 

  117. Morin JB, Petrakos G, Jiménez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840–4.

    Article  PubMed  Google Scholar 

  118. Kristensen GO, van den Tillaar R, Ettema GJ. Velocity specificity in early-phase sprint training. J Strength Cond Res. 2006;20(4):833–7.

    PubMed  Google Scholar 

  119. Cissik JM. Means and methods of speed training, part II. Strength Cond J. 2005;27(1):18–25.

    Google Scholar 

  120. Mero A, Komi PV. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol. 1986;55(5):553–61.

    Article  CAS  Google Scholar 

  121. Clark DA, Sabick MB, Pfeiffer RP, Kuhlman SM, Knigge NA, Shea KG. Influence of towing force magnitude on the kinematics of supramaximal sprinting. J Strength Cond Res. 2009;23(4):1162–8.

    Article  PubMed  Google Scholar 

  122. Schmidt RA, Wrisberg CA. Motor learning and performance: a situation based learning approach. 4th ed: Human Kinetics; 2008.

  123. Stodden DF, Gao Z, Goodway JD, Langendorfer SJ. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr Exerc Sci. 2014;26(3):231–41.

    Article  PubMed  Google Scholar 

  124. Stodden DF, Goodway JD, Langendorfer SJ, Roberton MA, Rudisill ME, Garcia C, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60(2):290–306.

    Article  Google Scholar 

  125. Porter JM, Wu WF, Crossley RM, Knopp SW, Campbell OC. Adopting an external focus of attention improves sprinting performance in low-skilled sprinters. J Strength Cond Res. 2015;29(4):947–53.

    Article  PubMed  Google Scholar 

  126. Wulf G. Attentional focus and motor learning: a review of 15 year. Int Rev Sport Exerc Psychol. 2013;6(1):77–104.

    Article  Google Scholar 

  127. Winkelman NC, Clark KP, Ryan LJ. Experience level influences the effect of attentional focus on sprint performance. Hum Mov Sci. 2017;52:84–95.

    Article  PubMed  Google Scholar 

  128. Porter JM, Wu WFW, Partridge JA. Focus of attention and verbal instructions: strategies of elite track and field coaches and athletes. Sport Sci Rev. 2010;19(3):199–211.

    Google Scholar 

  129. Benz A, Winkelman N, Porter J, Nimphius S. Coaching instructions and cues for enhancing sprint performance. Strength Cond J. 2016;38(1):1–11.

    Article  Google Scholar 

  130. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46.

    Article  PubMed  Google Scholar 

  131. Helland C, Hole E, Iversen E, Olsson MC, Seynnes O, Solberg PA, Paulsen G. Training strategies to improve muscle power: is Olympic-style weightlifting relevant? Med Sci Sports Exerc. 2017;49(4):736–45.

    Article  PubMed  Google Scholar 

  132. Seitz LB, Reyes A, Tran TT, Saez de Villarreal E, Haff GG. Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis. Sports Med. 2014;44(12):1693–702.

    Article  PubMed  Google Scholar 

  133. Harries SK, Lubans DR, Callister R. Resistance training to improve power and sports performance in adolescent athletes: a systematic review and meta-analysis. J Sci Med Sport. 2012;15(6):532–40.

    Article  PubMed  Google Scholar 

  134. Moir G, Sanders R, Button C, Glaister M. The effect of periodized resistance training on accelerative sprint performance. Sports Biomech. 2007;6(3):285–300.

    Article  PubMed  Google Scholar 

  135. Comyns TM, Harrison AJ, Hennessy LK. Effect of squatting on sprinting performance and repeated exposure to complex training in male rugby players. J Strength Cond Res. 2010;24(3):610–8.

    Article  PubMed  Google Scholar 

  136. Uth N. Anthropometric comparison of world-class sprinters and normal populations. J Sports Sci Med. 2005;4(4):608–16.

    PubMed  PubMed Central  Google Scholar 

  137. Loturco I, Contreras B, Kobal R, Fernandes V, Moura N, Siqueira F, et al. Vertically and horizontally directed muscle power exercises: relationships with top-level sprint performance. PLoS One. 2018;13(7):e0201475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Delecluse C, Coppenolle HV, Willems E, Van Leemputte M, Diels R, Goris M. Influence of high-resistance and high velocity training on sprint performance. Med Sci Sports Exerc. 1995;27(8):1203–9.

    Article  CAS  PubMed  Google Scholar 

  139. Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1(2):74–83.

    Article  PubMed  Google Scholar 

  140. Wathen D. Position statement: explosive/plyometric exercises. NSCA J. 1993;15(3):16–9.

    Google Scholar 

  141. Sáez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84.

    Article  PubMed  Google Scholar 

  142. Nédélec M, Halson S, Delecroix B, Abaidia AE, Ahmaidi S, Dupont G. Sleep hygiene and recovery strategies in elite soccer players. Sports Med. 2015;45(11):1547–59.

    Article  PubMed  Google Scholar 

  143. Gupta L, Morgan K, Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):1317–33.

    Article  PubMed  Google Scholar 

  144. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543–68.

    Article  CAS  PubMed  Google Scholar 

  145. Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part ii-recovery strategies. Sports Med. 2013;43(1):9–22.

    Article  PubMed  Google Scholar 

  146. Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781–96.

    Article  PubMed  Google Scholar 

  147. Ortiz RO Jr, Sinclair Elder AJ, Elder CL, Dawes JJ. A systematic review on the effectiveness of active recovery interventions on athletic performance of professional-, collegiate-, and competitive-level adult athletes. J Strength Cond Res. 2018; [Epub ahead of print].

  148. Van Hooren B, Peake JM. Do we need a cool-down after exercise? A narrative review of the psychophysiological effects and the effects on performance, injuries and the long-term adaptive response. Sports Med. 2018;48(7):1575–95.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Opplert J, Babault N. Acute effects of dynamic stretching on muscle flexibility and performance: an analysis of the current literature. Sports Med. 2018;48(2):299–325.

    Article  PubMed  Google Scholar 

  150. Winchester JB, Nelson AG, Landin D, Young MA, Schexnayder IC. Static stretching impairs sprint performance in collegiate track and field athletes. J Strength Cond Res. 2008;22(1):13–9.

    Article  PubMed  Google Scholar 

  151. Blazevich AJ, Gill ND, Kvorning T, Kay AD, Goh AG, Hilton B, et al. No effect of muscle stretching within a full, dynamic warm-up on athletic performance. Med Sci Sports Exerc. 2018;50(6):1258–66.

    Article  PubMed  Google Scholar 

  152. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Poppendieck W, Wegmann M, Ferrauti A, Kellmann M, Pfeiffer M, Meyer T. Massage and performance recovery: a meta-analytical review. Sports Med. 2016;46(2):183–204.

    Article  PubMed  Google Scholar 

  154. Mine K, Lei D, Nakayama T. Is pre-performance massage effective to improve maximal muscle strength and functional performance? A systematic review. Int J Sports Phys Ther. 2018;13(5):789–99.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Engel FA, Holmberg HC, Sperlich B. Is there evidence that runners can benefit from wearing compression clothing? Sports Med. 2016;46(12):1939–52.

    Article  PubMed  Google Scholar 

  156. Marqués-Jiménez D, Calleja-González J, Arratibel I, Delextrat A, Terrados N. Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiol Behav. 2016;153:133–48.

    Article  PubMed  CAS  Google Scholar 

  157. Leeder JD, van Someren KA, Bell PG, Spence JR, Jewell AP, Gaze D, Howatson G. Effects of seated and standing cold water immersion on recovery from repeated sprinting. J Sports Sci. 2015;33(15):1544–52.

    Article  PubMed  Google Scholar 

  158. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233–40.

    Article  PubMed  Google Scholar 

  159. Bieuzen F, Bleakley CM, Costello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS One. 2013;8(4):e62356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Malone JK, Blake C, Caulfield BM. Neuromuscular electrical stimulation during recovery from exercise: a systematic review. J Strength Cond Res. 2014;28(9):2478–506.

    Article  PubMed  Google Scholar 

  162. Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35(3):235–56.

    Article  PubMed  Google Scholar 

  163. Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):1182–7.

    Article  PubMed  Google Scholar 

  164. Pyne DB, Mujika I, Reilly T. Peaking for optimal performance: research limitations and future directions. J Sports Sci. 2009;27(3):195–202.

    Article  PubMed  Google Scholar 

  165. Mujika I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med. 1998;19(7):439–46.

    Article  CAS  PubMed  Google Scholar 

  166. Mujika I. Intense training: the key to optimal performance before and during the taper. Scand J Med Sci Sports. 2010;20(2):24–31.

    Article  PubMed  Google Scholar 

  167. Zaras ND, Stasinaki AN, Krase AA, Methenitis SK, Karampatsos GP, Georgiadis GV, et al. Effects of tapering with light vs. heavy loads on track and field throwing performance. J Strength Cond Res. 2014;28(12):3484–95.

    Article  PubMed  Google Scholar 

  168. Bosquet L, Montpetit J, Arvisais D, Mujika I. Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc. 2007;39(8):1358–65.

    Article  PubMed  Google Scholar 

  169. Pritchard HJ, Tod DA, Barnes MJ, Keogh JW, McGuigan MR. Tapering practices of New Zealand’s elite raw powerlifters. J Strength Cond Res. 2016;30(7):1796–804.

    Article  PubMed  Google Scholar 

  170. Pritchard HJ, Barnes MJ, Stewart RJ, Keogh JW, McGuigan MR. Higher- versus lower-intensity strength-training taper: effects on neuromuscular performance. Int J Sports Physiol Perform. 2019;14(4):458–63.

    Article  PubMed  Google Scholar 

  171. Grgic J, Mikulic P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res. 2017;31(9):2371–8.

    Article  PubMed  Google Scholar 

  172. Ritchie D, Allen JB, Kirkland A. Where science meets practice: Olympic coaches' crafting of the tapering process. J Sports Sci. 2018;36(10):1145–54.

    Article  PubMed  Google Scholar 


Page 2

  n 30 m (s) 60 m (s) 80 m (s) 30–60 m (s) 60–80 m (s) 80–100 m (s) 60–100 m (s)
100 m men
 9.58a 1 3.78 6.31 7.92 2.53 1.61 1.66 3.27
 9.71–9.80 5 3.82 ± 0.01 6.37 ± 0.03 8.05 ± 0.03 2.55 ± 0.02 1.68 ± 0.03 1.72 ± 0.03 3.40 ± 0.05
 9.81–9.90 7 3.83 ± 0.04 6.42 ± 0.04 8.12 ± 0.02 2.60 ± 0.02 1.70 ± 0.03 1.75 ± 0.02 3.45 ± 0.05
 9.91–10.00 12 3.85 ± 0.04 6.46 ± 0.04 8.18 ± 0.04 2.61 ± 0.02 1.73 ± 0.01 1.77 ± 0.02 3.50 ± 0.03
 10.01–10.10 21 3.89 ± 0.04 6.51 ± 0.03 8.26 ± 0.03 2.62 ± 0.03 1.74 ± 0.01 1.79 ± 0.02 3.54 ± 0.04
 10.11–10.20 24 3.95 ± 0.04 6.60 ± 0.05 8.36 ± 0.05 2.64 ± 0.03 1.75 ± 0.01 1.81 ± 0.04 3.57 ± 0.03
100 m women
 10.61–10.70 4 4.07 ± 0.02 6.89 ± 0.03 8.76 ± 0.03 2.82 ± 0.01 1.87 ± 0.02 1.90 ± 0.05 3.78 ± 0.06
 10.71–10.80 12 4.10 ± 0.03 6.94 ± 0.04 8.83 ± 0.03 2.84 ± 0.01 1.88 ± 0.02 1.93 ± 0.03 3.82 ± 0.04
 10.81–10.90 5 4.17 ± 0.06 6.99 ± 0.04 8.89 ± 0.03 2.85 ± 0.02 1.90 ± 0.01 1.95 ± 0.03 3.86 ± 0.04
 10.91–11.00 6 4.17 ± 0.07 7.05 ± 0.04 8.97 ± 0.03 2.87 ± 0.04 1.92 ± 0.02 1.99 ± 0.03 3.92 ± 0.04
 11.01–11.10 6 4.18 ± 0.05 7.09 ± 0.03 9.03 ± 0.02 2.89 ± 0.04 1.94 ± 0.02 2.01 ± 0.02 3.95 ± 0.03
 11.11–11.20 9 4.20 ± 0.05 7.15 ± 0.05 9.13 ± 0.04 2.95 ± 0.02 1.98 ± 0.02 2.04 ± 0.04 4.02 ± 0.05

  1. The calculations are based on biomechanical reports from international championships [23,24,25,26,27,28,29,30]
  2. aUsain Bolt’s world record race from 2009