Which of the following groups of algae does not produce compounds that are toxic to humans?

1. Hofbauer W., Breuer K., Sedlbauer K. Algen, Flechten, Moose und Farne auf Fassaden. Bauphysik. 2003;25:383–396. doi: 10.1002/bapi.200301660. [CrossRef] [Google Scholar]

2. Hofbauer W. Ph.D. Thesis. Leopold-Franzens Universität; Innsbruck, Austria: 2007. Aerophytische Organismen an Bauteiloberflächen.436p [Google Scholar]

3. Hofbauer W., Gärtner G. Microbial Life on Façades. Springer; Berlin/Heidelberg, Germany: 2021. 323p [Google Scholar]

4. Schlichting H.E., Jr. The importance of airborne algae and protozoa. J. Air Pollut. Control Assoc. 1969;19:946–951. doi: 10.1080/00022470.1969.10469362. [PubMed] [CrossRef] [Google Scholar]

5. Smith T., Olson R. A Taxonomic Survey of Lamp Flora (Algae and Cyanobacteria) in Electrically Lit Passages within Mammouth Cave National Park, Kentucky. Int. J. Speleol. 2007;36:104–114. doi: 10.5038/1827-806X.36.2.6. [CrossRef] [Google Scholar]

6. Albertano P., Bruno L., Bellezza S. New strategies for the monitoring and control of cyanobacterial films on valuable lithic faces. Plant. Biosyst. 2005;139:311–322. doi: 10.1080/11263500500342256. [CrossRef] [Google Scholar]

7. Ehrenberg C.G. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen. Akad. Wiss. Berl. 1844;9:182–207. [Google Scholar]

8. Sahu N., Tangutur A.D. Airborne algae: Overview of the current status and its implications on the environment. Aerobiologia. 2015;31:89–97. doi: 10.1007/s10453-014-9349-z. [CrossRef] [Google Scholar]

9. Kristiansen J. 16. Dispersal of freshwater algae—A review. Hydrobiologia. 1996;336:151–157. doi: 10.1007/BF00010829. [CrossRef] [Google Scholar]

10. Tesson S.V.M., Skjøth C.A., Šantl-Temkiv T., Löndahl J. Airborne Microalgae: Insights, Opportunities, and Challenges. Appl. Environ. Microbiol. 2016;82:1978–1991. doi: 10.1128/AEM.03333-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Burge H.A., Rogers C.A. Outdoor allergens. Environ. Health Prospect. 2000;108:653–659. [PMC free article] [PubMed] [Google Scholar]

12. Huffman J.A., Prenni A.J., DeMott P.J., Pöhlker C., Mason R.H., Robinson N.H., Fröhlich-Nowoisky J., Tobo Y., Després V.R., Garcia E., et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 2013;13:6151–6164. doi: 10.5194/acp-13-6151-2013. [CrossRef] [Google Scholar]

13. Blanchard D. The ejection of drops from the sea and their enrichment with bacteria and other materials: A review. Estuaries. 1989;12:127–137. doi: 10.2307/1351816. [CrossRef] [Google Scholar]

14. Wiśniewska K., Lewandowska A.U., Śliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment—Review study. Environ. Int. 2019;131:104964. doi: 10.1016/j.envint.2019.104964. [PubMed] [CrossRef] [Google Scholar]

15. Murby A.L., Haney J.F. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia. 2015;32:395–403. doi: 10.1007/s10453-015-9409-z. [CrossRef] [Google Scholar]

16. Gregory P.H., Hamilton E.D., Sreeramulu T. Occurrence of Alga Gloeocapsa in the air. Nature. 1955;176:1270. doi: 10.1038/1761270a0. [CrossRef] [Google Scholar]

17. Genitsaris S., Kormas K.A., Moustaka-Gouni M. Airborne Algae and Cyanobacteria: Occurrence and Related Health Effects. Front. Biosci. 2011;3:772–787. [PubMed] [Google Scholar]

18. Brown R.M., Jr., Larson D.H., Bold H.C. Airborne algae: Their abundance and heterogeneity. Science. 1964;143:583–585. doi: 10.1126/science.143.3606.583. [PubMed] [CrossRef] [Google Scholar]

19. Rosas I., Roy-Ocotla G., Mosiño P., Baez A., Rivera L. Abundance and heterogeneity of algae in the Mexico City atmosphere. Geofis. Int. 1987;26:359–373. [Google Scholar]

20. Roy-Ocotla G., Carrera J. Aeroalgae: Responses to some aerobiological questions. Grana. 1993;32:48–56. doi: 10.1080/00173139309436419. [CrossRef] [Google Scholar]

21. Sharma N.K., Rai A.K., Singh S., Brown R.M., Jr. Airborne Algae: Their Present Status and Relevance. J. Phycol. 2007;43:615–627. doi: 10.1111/j.1529-8817.2007.00373.x. [CrossRef] [Google Scholar]

22. Bernstein I.L., Safferman R.S. Sensitivity of skin and bronchial mucosa to green algae. J. Allergy. 1966;38:166–173. doi: 10.1016/0021-8707(66)90039-6. [PubMed] [CrossRef] [Google Scholar]

23. Sharma N.K., Rai A.K. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol. Environ. Saf. 2008;69:158–162. doi: 10.1016/j.ecoenv.2006.08.006. [PubMed] [CrossRef] [Google Scholar]

24. Lewandowska A.U., Śliwińska-Wilczewska S., Wozniczka D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the southern Baltic Sea. Mar. Pollut. Bull. 2017;125:30–38. doi: 10.1016/j.marpolbul.2017.07.064. [PubMed] [CrossRef] [Google Scholar]

25. Singh H.W., Wade R.M., Sherwood A.R. Diurnal patterns of airborne algae in the Hawaiian islands: A preliminary study. Aerobiologia. 2018;34:363–373. doi: 10.1007/s10453-018-9519-5. [CrossRef] [Google Scholar]

26. Wiśniewska K.A., Śliwińska-Wilczewska S., Lewandowska A.U. The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region. PLoS ONE. 2020;15:e0238808. doi: 10.1371/journal.pone.0238808. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Broady P.A., Smith R.A. A preliminary investigation of the diversity, survivability and dispersal of algae introduced into Antarctica by human activity. Proc. NIPR Simp. Polar. Biol. 1994;7:185–197. [Google Scholar]

28. Gärtner G., Stoyneva M.P., Mancheva A.D., Uzunov B.A. A new method in collection and cultivation of aerophytic and endolithic algae. Ber. Nat. Med. Ver. Innsbr. 2010;96:27–34. [Google Scholar]

29. Gärtner G. Über Aufgabe und Bedeutung von Kulturen in der Algentaxonomie (an Beispielen von Boden—Luft—und Flechtenalgen. Sauteria. 1986;1:149–157. [Google Scholar]

30. Ettl H., Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. 2nd ed. Springer Spektrum; Berlin/Heidelberg, Germany: 2014. 773p [Google Scholar]

31. Hofbauer W., Fitz C., Krus M., Sedlbauer K., Breuer K. Prognoseverfahren zum Biologischen Befall Durch Algen, Pilze und Flechten an Bauteiloberflächen auf der Basis Bauphysikalischer und Mikrobieller Untersuchungen. Bauforschung für die Praxis Band 77. Fraunhofer IRB Verlag; Stuttgart, Germany: 2006. 304p [Google Scholar]

32. Lamenti G., Tiano P., Tomaselli L. Molecular techniques applied to the taxonomic study of cyanobacterial living on stone monuments. Coalition. 2002;5:4–5. [Google Scholar]

33. Zanardini E., Abbruscato P., Realini M., Brusetti L., Sorlini C. Molecular techniques applied to the study of microbial communities colonising different lithotypes. Coalition. 2002;5:8–10. [Google Scholar]

34. Gonzalez J.M., Saiz-Jimenez C. Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J. Sep. Sci. 2004;27:174–180. doi: 10.1002/jssc.200301609. [PubMed] [CrossRef] [Google Scholar]

35. Be A., Thissen J.B., Fofanov V.Y., Allen J.E., Rojas M., Golovko G., Fofanov Y., Koshinsky H., Jaing C.J. Metagenomic Analysis of the Airborne Environment in Urban Spaces. Microb. Ecol. 2015;69:346–355. doi: 10.1007/s00248-014-0517-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Rippin M., Lange S., Sausen N., Becker B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol. Ecol. 2018;94:fiy036. doi: 10.1093/femsec/fiy036. [PubMed] [CrossRef] [Google Scholar]

37. Thornbush M., Viles H. Integrated digital photography and image processing for the quantification of colouration on soiled limestone surfaces in Oxford, England. J. Cult. Herit. 2004;5:285–290. doi: 10.1016/j.culher.2003.10.004. [CrossRef] [Google Scholar]

38. Thornbush M., Viles H. Photo-Based Decay Mapping of Replaced Stone Blocks on the Boundary Wall of Worcester College, Oxford. Volume 271. Special Publications; Geological Society; London, UK: 2007. pp. 69–75. [Google Scholar]

39. Alum A., Mobasher B., Rashid A., Abbaszadegan M. Image Analyses-Based Nondisruptive Method to Quantify Algal Growth on Concrete Surfaces. J. Environ. Eng. 2009;135:85–190. doi: 10.1061/(ASCE)0733-9372(2009)135:3(185). [CrossRef] [Google Scholar]

40. Angelini E., Grassini S., Mombello D., Neri A., Parvis M. An imaging approach for a contactless monitoring of the conservation state of metallic works of art. Appl. Phys. A. 2010;100:919–925. doi: 10.1007/s00339-010-5669-1. [CrossRef] [Google Scholar]

41. Karsten U., Klimant I., Holst G. A New In Vivo Fluorimetric Technique to Measure Growth of Adhering Phototrophic Microorganisms. Appl. Environ. Microbiol. 1996;62:237–243. doi: 10.1128/aem.62.1.237-243.1996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Schumann R., Häubner N., Klausch S., Karsten U. Chlorophyll extraction methods foer the quantification of green microalgae colonizing building facades. Int. Biodeterior. Biodegrad. 2005;55:213–222. doi: 10.1016/j.ibiod.2004.12.002. [CrossRef] [Google Scholar]

43. Werder v.J., Venzme H., Černy R. Application of fluorometric and numerical analysis for assessing the algal resistance of external thermal insulation composite systems. J. Build. Phys. 2015;38:290–316. doi: 10.1177/1744259113506073. [CrossRef] [Google Scholar]

44. Roldán M., Clavero E., Hernández-Mariné M. 3-D Biofilm Structure of Cyanobacteria in Catacombs. Coalition. 2002;5:6–8. [Google Scholar]

45. Roldán M., Clavero E., Hernández-Mariné M. Biofilms fluorescence and image analysis in hypogaean monuments research. Arch. Hydrobiol. Algol. Stud. 2004;111:127–143. [Google Scholar]

46. Roldán M., Thomas F., Castel S., Quesada A., Hernández-Mariné M. Non invasive pigment identification in living phototrophic biofilms by confocal imaging spectrophotometry. Appl. Environ. Microbiol. 2004;70:3745–3750. doi: 10.1128/AEM.70.6.3745-3750.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Blossom H.E., Markussen B., Daugbjerg N., Krock B., Norlin A., Hansen P.J. The Cost of Toxicity in Microalgae: Direct Evidence from the Dinoflagellate Alexandrium. Front. Microbiol. 2019;10 doi: 10.3389/fmicb.2019.01065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Gärtner G., Stoyneva-Gärtner M., Uzunov B. Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins. 2021;13:322. doi: 10.3390/toxins13050322. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Woodcock A.H. Note concerning human respiratory irritation associated with high concentration of plankton and mass mortality of marine organisms. J. Mar. Res. 1948;7:56–62. [Google Scholar]

50. Cheng Y.S., McDonald J.D., Kracko D., Irvin C.M., Zhou Y., Pierce R.H., Henry M.S., Bourdelais A., Naar J., Baden D.G. Concentration and Particle Size of Airborne Toxic Algae (Brevetoxin) Derived from Ocean Red Tide Events. Environ. Sci. Technol. 2005;39:3443–3449. doi: 10.1021/es048680j. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Abraham W.M., Bourdelais A.J., Sabater J.R., Ahmed A., Lee T.A., Serebriakov I., Baden D.G. Airway Responses to Aersolized Brevetoxins in an Animal Model of Asthma. Am. J. Respir. Crit. Care Med. 2005;171:26–34. doi: 10.1164/rccm.200406-735OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Abraham W.M., Bourdelais A.J., Ahmed A., Serebriakov I., Baden D.G. Effects of inhaled Brevetoxins in Allergic Airways: Toxin-Allergen Interactions and Pharmacologic Intervention. Environ. Health Perspect. 2005;113:632–637. doi: 10.1289/ehp.7498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Fleming L.E., Kirkpatrick B., Backer L.C., Bean J.A., Wanner A., Dalpra D., Tamer R., Zaias J., Cheng Y.S., Pierce R., et al. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma. Environ. Health Perspect. 2005;113:650–657. doi: 10.1289/ehp.7500. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Backer L.C., Kirkpatrick B., Fleming L.E., Cheng Y.S., Pierce R., Bean J.A., Clark R., Johnson D., Wanner A., Tamer R., et al. Occupational Exposure to Aerosolized Brevetoxins during Florida Red Tide Events: Effects on a healthy Worker Population. Environ. Health Perspect. 2005;113:644–649. doi: 10.1289/ehp.7502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Benson J.M., Hahn F.F., March T.H., McDonald J.D., Gomez A.P., Sopori M.J., Bourdelais A.J., Naar J., Zaias J., Bossart G.D., et al. Inhalation Toxicity of Brevetoxin 3 in Rats Exposed for Twenty-Two Days. Environ. Health Perspect. 2005;113:626–631. doi: 10.1289/ehp.7497. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Deeds J.R., Schwartz M.D. Human risk associated with palytoxin exposure. Toxicon. 2010;56:150–162. doi: 10.1016/j.toxicon.2009.05.035. [PubMed] [CrossRef] [Google Scholar]

57. Pelin M., Brovedani V., Sosa S., Tubaro A. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Mar. Drugs. 2016;14:33. doi: 10.3390/md14020033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Ciminiello P., Dell’Aversano C., Fattorusso E., Forino M. Palytoxins: A still haunting Hawaiian curse. Phytochem. Rev. 2010;9:491–500. doi: 10.1007/s11101-010-9185-x. [CrossRef] [Google Scholar]

59. Snoeks L., Veenstra J. Family with fever after cleaning a sea aquarium. Ned. Tijdschr. Voor Geneeskd. 2012;156:A4200. [PubMed] [Google Scholar]

60. Hall C., Levy D., Sattler S. A Case of Palytoxin Poisoning in a Home Aquarium Enthusiast and His Family. Case Rep. Emerg. Med. 2015;2015:621815. doi: 10.1155/2015/621815. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Wood P., Alexis A., Reynolds T., Blohm E. Aerosolized palytoxin toxicity during home marine aquarium maintenance. Toxicol. Commun. 2018;2:49–52. doi: 10.1080/24734306.2018.1480994. [CrossRef] [Google Scholar]

62. Schulz M., Łoś A., Szabelak A., Strachecka A. Inhalation poisoning with palytoxin from aquarium coral: Case description and safety advice. Arh. Hig. Rada. Toksikol. 2019;70:14–17. doi: 10.2478/aiht-2019-70-3209. [PubMed] [CrossRef] [Google Scholar]

63. Hallegraeff G.M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. J. Phycol. 2010;46:220–235. doi: 10.1111/j.1529-8817.2010.00815.x. [CrossRef] [Google Scholar]

64. Oikonomou A., Katsiapi M., Karayanni H., Moustaka-Gouni M., Kormas K.A. Plankton microorganisms coinciding with two consecutive mass fish kills in a newly reconstructed lake. Sci. World J. 2012:504135. doi: 10.1100/2012/504135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Vasas G., Hamvas M., Borics G., Gonda S., Máthé C., Jámbrik K., Nagy Z.L. Occurrence of toxic Prymnesium parvum blooms with high protease activity is related to fish mortality in Hungarian ponds. Harmful Algae. 2012;17:102–110. doi: 10.1016/j.hal.2012.03.007. [CrossRef] [Google Scholar]

66. Roelke D.L., Barkoh A., Brooks B.W., Grover J.P., Hambright K.D., LaClaire J.W., II, Moeller P.D.R., Patino R. A chronicle of a killer alga in the west: Ecology, assessment, and management of Prymnesium parvum blooms. Hydrobiologia. 2016;764:29–50. doi: 10.1007/s10750-015-2273-6. [CrossRef] [Google Scholar]

67. Qin J., Hu Z., Zhang Q., Xu N., Yang Y. Toxic effects and mechanisms of Prymnesium parvum (Haptophyta) isolated from the Pearl River Estuary, China. Harmful Algae. 2020;96:101844. doi: 10.1016/j.hal.2020.101844. [PubMed] [CrossRef] [Google Scholar]

68. Pulido O.M. Domoic acid toxicologic pathology: A review. Mar. Drugs. 2008;6:180–219. doi: 10.3390/md6020180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Funk J.A., Janech M.G., Dillon J.C., Bissler J.J., Siroky B.J., Bell P.D. Characterization of Renal Toxicity in Mice Administered the Marine Biotoxin Domoic Acid. J. Am. Soc. Nephrol. 2014;25:1187–1197. doi: 10.1681/ASN.2013080836. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Anagnostidis K., Economou-Amilli A., Roussomoustakaki M. Epilithic and Chasmolithic Microflora (Cyanophyta, Bacillariophyta) from Marbles of the Parthenon (Acropolis-Athens, Greece. Nova Hedwig. 1983;38:227–287. [Google Scholar]

71. Zimba P.V., Rowan M., Triemer R. Identification of euglenoid algae that produce ichthyotoxin(s) J. Fish. Dis. 2004;27:115–117. doi: 10.1046/j.1365-2761.2003.00512.x. [PubMed] [CrossRef] [Google Scholar]

72. Zimba P.V., Moeller P.D., Beauchesne K., Lane H.E., Triemer R.E. Identification of euglenophycin—A toxin found in certain euglenoids. Toxicon. 2010;55:100–104. doi: 10.1016/j.toxicon.2009.07.004. [PubMed] [CrossRef] [Google Scholar]

73. Gutierrez D.B., Rafalski A., Beauchesne K., Moeller P.D., Triemer R.E., Zimba P.V. Quantitative Mass Spectrometric Analysis and Post-Extraction Stability Assessment of the Euglenoid Toxin Euglenophycin. Toxins. 2013;5:1587–1596. doi: 10.3390/toxins5091587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Zimba P.V., Huang I.-S., Gutierrez D., Shin W., Bennett M.S., Triemer R.E. Euglenophycin is produced in at least six species of euglenoid algae and six of seven strains of Euglena sanguinea. Harmful Algae. 2017;63:79–84. doi: 10.1016/j.hal.2017.01.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Zimba P.V., Ordner P., Gutierrez D. Selective toxicity and angiogenic inhibition by euglenophycin: A role in cancer therapy? HSOA J. Cancer Biol. Treat. 2016;3:8. doi: 10.24966/CBT-7546/100008. [CrossRef] [Google Scholar]

76. Toriumi S., Takano H. A new genus in the Chloromonadophyceae from Atsumi Bay, Japan. Bull. Tokai Reg. Fish. Res. Lab. 1973;76:25–35. [Google Scholar]

77. Khan S., Arakawa O., Onoue Y. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae) J. World Aquacult. Soc. 1996;27:254–263. doi: 10.1111/j.1749-7345.1996.tb00607.x. [CrossRef] [Google Scholar]

78. Bundesamt für Seeschiffahrt und Hydrographie BSH, editor. Bund/Länder-Messprogramm für die Meeresumwelt BLMP Meeresumwelt 1994–1996 Kapitel 3.2 Phytoplankton—Untersuchungen. Bundesamt für Seeschiffahrt und Hydrographie (BSH), Hamburg und Rostock, Marx & Haase; Hamburg, Germany: 2000. pp. 17–19. [Google Scholar]

79. Khan S., Arakawa O., Onoue Y. A toxicological study of the marine phytoflagellate, Chattonella antiqua (Raphidophyceae) Phycologia. 1996;35:239–244. doi: 10.2216/i0031-8884-35-3-239.1. [CrossRef] [Google Scholar]

80. Menezes M., Bicudo C.E.M. Freshwater Raphidophyceae from the State of Rio de Janeiro, Southeast Brazil. Biota Neotrop. 2010;10:323–331. doi: 10.1590/S1676-06032010000300030. [CrossRef] [Google Scholar]

81. Collins M. Algal Toxins. Microbiol. Rev. 1978;42:725–746. doi: 10.1128/mr.42.4.725-746.1978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Brunelli M., Garcia-Gil M., Mozzachiodi R., Roberto M., Scuri R., Traina G., Zaccardi M.L. Neurotoxic effects of caulerpenyne. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2000;24:939–954. doi: 10.1016/S0278-5846(00)00112-3. [PubMed] [CrossRef] [Google Scholar]

83. Mozzachiodi R., Scuri R., Roberto M., Brunelli M. Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience. 2001;107:519–526. doi: 10.1016/S0306-4522(01)00365-7. [PubMed] [CrossRef] [Google Scholar]

84. Relini G., Relini M., Torchia G. Fish biodiversity in a Caulerpa taxifolia meadow in the Ligurian Sea. Ital. J. Zool. 1998;65(Suppl. 1):465–470. doi: 10.1080/11250009809386867. [CrossRef] [Google Scholar]

85. Chiang I.-Z., Huang W.-Y., Wu J.-T. Allelochemicals of Botryococcus braunii (Chlorophyceae) J. Phycol. 2004;40:474–480. doi: 10.1111/j.1529-8817.2004.03096.x. [CrossRef] [Google Scholar]

86. Amaro H.M., Guedes A.C., Malcata F.X. Antimicrobial activities of microalgae: An invited review. In: Mendez-Vilas A., editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Volume 2. Formatex Research Center; Badajoz, Spain: 2011. pp. 1272–1280. ((Formatex Microbiology Book Series)). [Google Scholar]

87. Das B.K., Pradhan J. Antibacterial properties of selected freshwater microalgae against pathogenic bacteria. Indian J. Fish. 2010;57:61–66. [Google Scholar]

88. Bhowmick S., Mazumdar A., Moulick A., Adam V. Algal metabolites: An inevitable substitute for antibiotics. Biotechnol. Adv. 2020;43:107571. doi: 10.1016/j.biotechadv.2020.107571. [PubMed] [CrossRef] [Google Scholar]

89. Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., Strait L.A., Spoehr H.A., Hardin G.J., Milner H.W., et al. Chlorellin, an antibacterial substance from Chlorella. Science. 1944;99:351–352. doi: 10.1126/science.99.2574.351. [PubMed] [CrossRef] [Google Scholar]

90. Harder R., Oppermann A. Über antibiotische Stoffe bei den Grünalgen Stichococcus bacillaris und Protosiphon botryoides. Arch. Mikrobiol. 1953;19:398–401. doi: 10.1007/BF00412158. [PubMed] [CrossRef] [Google Scholar]

91. Matusiak K., Jaroszyńska T., Krzywicka A. Activity of antibacterial substance in Chlorella vulgaris and Chlorella pyrenoidosa at various stages of their development cycle and the influence of light on the process. Bull. Acad. Pol. Sci. Biol. 1965;13:667–671. [PubMed] [Google Scholar]

92. Pande B.N., Gupta A.B. Antibiotic properties in Chlorococcum humicolum (Naeg) Rabenh. (Chlorophyceae) Phycologia. 1977;16:439–441. doi: 10.2216/i0031-8884-16-4-439.1. [CrossRef] [Google Scholar]

93. Ohta S., Shiomi Y., Kawashima A., Aozasa O., Nakao T., Nagate T., Kitamura K., Miyata H. Antibiotic effect of linolenic acid from Chlorococcum strain HS-IO1 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J. Appl. Phycol. 1995;7:121–127. doi: 10.1007/BF00693057. [CrossRef] [Google Scholar]

94. Bhagavathy S., Sumathi P., Bell I.J.S. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed. 2011;1(Suppl. 1):1–7. doi: 10.1016/S2221-1691(11)60111-1. [CrossRef] [Google Scholar]

95. Uma R., Sivasubramanian V., Devaraj S.N. Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus Olivaceous, Chlorococcum humicola and Chlorella vulgaris. J. Algal Biomass Util. 2011;2:74–81. [Google Scholar]

96. Sahu V., Toppo K., Suseela M.R., Asthana A.K. Allelopathic effect of Stichococcus bacillaris Nageli (Green Alga) on the growth of two bryophytes. Arch. Bryol. 2013;162:1–4. [Google Scholar]

97. Thamilvanan D., Karthikeyan D., Muthukumaran M., Balakumar B.S. Antibacterial activity of selected microalgal members of Chlorophyceae. World J. Pharm. Pharm. Sci. 2016;5:718–729. [Google Scholar]

98. Francis G. Poisonous Australian Lake. Nature. 1878;18:11–12. doi: 10.1038/018011d0. [CrossRef] [Google Scholar]

99. Beasley V.R., Dahlem A.M., Cook W.O., Valentine W.M., Lovell R.A., Hooser S.B., Harada K.-I., Suzuki M., Carmichael W.W. Diagnostic and clinically important aspects of cyanobacterial (blue-green algae) toxicoses. J. Vet. Diagn. Investig. 1989;1:359–365. doi: 10.1177/104063878900100417. [PubMed] [CrossRef] [Google Scholar]

100. Llana-Ruiz-Cabello M., Jos A., Cameán A., Oliveira F., Barreiro A., Machado J., Azevedo J., Pinto E., Almeida A., Campos A., et al. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins. 2019;11:624. doi: 10.3390/toxins11110624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Merel S., Walker D., Chicana R., Snyder S., Baurès E., Thomas O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013;59:303–327. doi: 10.1016/j.envint.2013.06.013. [PubMed] [CrossRef] [Google Scholar]

102. Codd G.A., Lindsay J., Young F.M., Morrison L.F., Metcalf J.S. Harmful cyanobacteria. In: Huisman J., Matthijs H.C., Visser P.M., editors. Harmful Cyanobacteria. Volume 3. Springer; Dordrecht, The Netherlands: 2005. ((Aquatic Ecology, Series)). [CrossRef] [Google Scholar]

103. Vranješ N., Jovanović M. Cyanotoxins: A dermatological problem. Arch. Oncol. 2011;19:64–66. doi: 10.2298/AOO1104064V. [CrossRef] [Google Scholar]

104. Grauer F.H. Dermatitis escharotica caused by a marine alga. Hawaii Med. J. 1959;19:32–34. [PubMed] [Google Scholar]

105. Grauer F.H., Arnold H.L., Jr. Seaweed dermatitis. First report of a dermatitis-producing marine alga. Arch. Dermatol. 1961;84:720–732. doi: 10.1001/archderm.1961.01580170014003. [PubMed] [CrossRef] [Google Scholar]

106. Carmichael W.W. Health effects of toxin-producing cyanobacteria, “The CyanoHabs” Hum. Ecol. Risk Assess. 2001;7:1393–1407. doi: 10.1080/20018091095087. [CrossRef] [Google Scholar]

107. Van Apeldoorn M.E., Van Egmond H.P., Speijers G.J.A., Bakker G.J.I. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007;51:7–60. doi: 10.1002/mnfr.200600185. [PubMed] [CrossRef] [Google Scholar]

108. Teixeira M., Costa M., Carvalho V.L.P., Pereira M., Hager E. Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull. Pan Am. Health Organ. 1993;27:244–253. [PubMed] [Google Scholar]

109. Pouria S., de Andrade A., Barbosa J., Cavalcanti R.I., Barreto V.T.S., Ward C.J., Preiser W., Poon G.K., Neild G.H., Codd G.A. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 1998;352:21–26. doi: 10.1016/S0140-6736(97)12285-1. [PubMed] [CrossRef] [Google Scholar]

110. Kuiper-Goodman T., Falconer I., Fitzgerald J. Human health aspects. In: Chorus I., Bartram J.E., editors. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. FN Spon; London, UK: 1999. pp. 113–153. [Google Scholar]

111. Duy T.N., Lam P.K.S., Shaw G., Connell D.W. Toxicology and risk assessment of freshwater cyanobacterial (blue green algal) toxins in water. Rev. Environ. Contam. Toxicol. 2000;163:113–186. [PubMed] [Google Scholar]

112. Rao P.V.L., Gupta N., Bhaskar A.S.B., Jayaraj R. Toxins and bioactive compounds from cyanobacteria and their implications on human health. J. Environ. Biol. 2002;23:215–224. [PubMed] [Google Scholar]

113. De la Cruz A., Logsdon R., Lye D., Guglielmi S., Rice A., Steinitz Kannan M. Harmful Algae Bloom Occurrence in Urban Ponds: Relationship of Toxin Levels with Cell Density and Species Composition. J. Earth Environ. Sci. 2017;25:704–726. [PMC free article] [PubMed] [Google Scholar]

114. Higa T., Kuniyoshi M. Toxins associated with medicinal and edible seaweeds. J. Toxicol. Toxin. Rev. 2000;19:119–137. doi: 10.1081/TXR-100100317. [CrossRef] [Google Scholar]

115. Nagai H., Yasumoto Y., Hokama Y. Aplysiatoxin and debromoaplysiatoxin as the causative agents of a red alga Gracilaria coronopifolia poisoning in Hawaii. Toxicon. 1996;37:753–761. doi: 10.1016/0041-0101(96)00014-1. [PubMed] [CrossRef] [Google Scholar]

116. Cox P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A., Bergman B. Diverse taxa of cyanobacteria produce ß-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA. 2005;102:5074–5078. doi: 10.1073/pnas.0501526102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Murch S.J., Cox P.A., Banack S.A., Steele J.C., Sacks O.W. Occurrence of ß-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol. Scand. 2004;110:267–269. doi: 10.1111/j.1600-0404.2004.00320.x. [PubMed] [CrossRef] [Google Scholar]

118. Pablo J., Banack S.A., Cox P.A., Johnson T.E., Papapetropoulos S., Bradley W.G., Buck A., Mash D.C. Cyanobacterial neurotoxin BMAA in ALS and Alzheimers’s disease. Acta Neurol. Scand. 2009;120:216–225. doi: 10.1111/j.1600-0404.2008.01150.x. [PubMed] [CrossRef] [Google Scholar]

119. Banack S.A., Caller T.A., Stommel E.W. The cyanobacteria derived toxin ß-n-methylamino-l-alanine and amyotrophic lateral sclerosis. Toxins. 2010;2:2837–2850. doi: 10.3390/toxins2122837. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Kellmann R., Mihali T.K., Jeon Y.J., Pickford R., Pomati F., Neilan B.A. Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria. Appl. Environ. Microbiol. 2008;74:4044–4053. doi: 10.1128/AEM.00353-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Kaas H., Henriksen P. Saxitoxins (PSP toxins) in Danish lakes. Water Res. 2000;34:2089–2097. doi: 10.1016/S0043-1354(99)00372-3. [CrossRef] [Google Scholar]

122. Velzeboer R.M.A., Baker P.D., Rositano J., Heresztyn T., Codd G.A., Raggett S.L. Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia. 2000;39:395–407. doi: 10.2216/i0031-8884-39-5-395.1. [CrossRef] [Google Scholar]

123. Dias E., Pereira P., Franca S. Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA31 (cyanobacteria) J. Phycol. 2002;38:705–712. doi: 10.1046/j.1529-8817.2002.01146.x. [CrossRef] [Google Scholar]

124. Molica R., Onodera H., Garciá C., Rivas M., Andrinolo D., Nascimento S., Meguro H., Oshima Y., Azevedo S., Lagos N. Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia. 2002;41:606–611. doi: 10.2216/i0031-8884-41-6-606.1. [CrossRef] [Google Scholar]

125. Fastner J., Beulker C., Geiser B., Hoffmann A., Kröger R., Teske K., Hoppe J., Mundhenk L., Neurath H., Sagebiel D., et al. Fatal Neurotoxicosis in Dogs Associated with Tychoplanktic, Anatoxin-a Producing Tychonema sp. in Mesotrophic Lake Tegel, Berlin. Toxins. 2018;2018:60. doi: 10.3390/toxins10020060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Harland F.M.J., Wood S.A., Moltchanova E., Williamson W.M., Gaw S. Phormidium autumnale Growth and Anatoxin-a Production under Iron and Copper Stress. Toxins. 2013;5:2504–2521. doi: 10.3390/toxins5122504. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Berthold D.E., Lefler F.W., Huang I.-S., Abdulla H., Zimba P.V., Laughinghouse H.D. Iningainema tapete sp. nov. (Scytonemataceae, Cyanobacteria) from greenhouses in central Florida (USA) produces two types of nodularin with biosynthetic potential for microcystin-LR and anabaenopeptin production. Harmful Algae. 2021;101:101969. doi: 10.1016/j.hal.2020.101969. [PubMed] [CrossRef] [Google Scholar]

128. Stewart J.B., Bornemann V., Chen J.L., Moore R.E., Caplan F.R., Karuso H., Larsen L.K., Patterson G.M.L. Cytotoxic, Fungicidal Nucleosides from Blue Green Algae Belonging to the Scytonemataceae. J. Antibiot. 1988;41:1048–1056. doi: 10.7164/antibiotics.41.1048. [PubMed] [CrossRef] [Google Scholar]

129. Sivonen K., Jones G. Chapter 3. Cyanobacterial Toxins. In: Chorus I., Bartram J., editors. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. E & FN Spon; London, UK: 1999. 70p [Google Scholar]

130. Klemm L.C., Czerwonka E., Hall M.L., Williams P.G., Mayer A.M.S. Cyanobacteria Scytonema javanicum and Scytonema ocellatum Lipopolysaccharides Elicit Release of Superoxide Anion, Matrix-Metalloproteinase-9, Cytokines and Chemokines by Rat Microglia In Vitro. Toxins. 2018;10:130. doi: 10.3390/toxins10040130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Aráoz R., Molgó J., de Marsac N.T. Neurotoxic cyanobacterial toxins. Toxicon. 2010;56:813–828. doi: 10.1016/j.toxicon.2009.07.036. [PubMed] [CrossRef] [Google Scholar]

132. Swain S.S., Paidesetty S.K., Padhy R.N. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed. Pharmacother. 2017;90:760–776. doi: 10.1016/j.biopha.2017.04.030. [PubMed] [CrossRef] [Google Scholar]

133. Islam Z., Harkema J.R., Pestka J.J. Satratoxin G from the Black Mold Stachybotrys chartarum Evokes Olfactory Sensory Neuron Loss and Inflammation in the Murine Nose and Brain. Environ. Health Perspect. 2006;114:1099–1107. doi: 10.1289/ehp.8854. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Nesic K., Ivanovic S., Nesic V. Fusarial toxins: Secondary metabolites of Fusarium fungi. Rev. Environ. Contam. Toxicol. 2014;228:101–120. [PubMed] [Google Scholar]

135. Croft W.A., Jarvis B.B., Yatawara C.S. Airborne outbreak of trichothecene toxicosis. Atmos. Environ. 1986;20:549–552. doi: 10.1016/0004-6981(86)90096-X. [CrossRef] [Google Scholar]

136. Nikulin M., Reijula K., Jarvis B.B., Veijalainen P., Hintikka E.L. Effects of Intranasal Exposure to Spores of Stachybotrys atra in Mice. Fundam. Appl. Toxicol. 1997;35:182–188. doi: 10.1006/faat.1996.2274. [PubMed] [CrossRef] [Google Scholar]

137. Watanabe M.F., Oishi S. Effects of Environmental Factors on Toxicity of a Cyanobacterium (Microcystis aeruginosa) under Culture Conditions. Appl. Environ. Microbiol. 1985;49:1342–1344. doi: 10.1128/aem.49.5.1342-1344.1985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Paerl H.W., Otten T.G. Blooms Bite the Hand That Feeds Them. Science. 2013;342:433–434. doi: 10.1126/science.1245276. [PubMed] [CrossRef] [Google Scholar]

139. Søgaard D.H., Sorrell B.K., Sejr M.K., Andersen P., Rysgaard S., Hansen P.J., Skyttä A., Lemcke S., Lund-Hansen L.C. An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters. Nat. Sci. Rep. 2021;11:2915. doi: 10.1038/s41598-021-82413-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Sommer N. Ph.D. Thesis. Universität Leipzig; Leipzig, Germany: 2014. Untersuchungen zum Allergenen Potential der Luftgetragenen Algen Stichococcus bacillaris, Tetracystis aeria und Xanthonema montanum.115p [Google Scholar]

141. Sharma N.K., Singh S. Algae of settle city dust: Diversity and temporal pattern. Indian J. Aerobiol. 2008;21:36–41. [Google Scholar]

142. Chu W.-L., Tneh S.-Y., Ambu S. A survey of airborne algae and cyanobacteria within the indoor environment of an office building in Kuala Lumpur, Malaysia. Grana. 2013;52:207–220. doi: 10.1080/00173134.2013.789925. [CrossRef] [Google Scholar]

143. Bernstein I.L., Villacorte G.V., Safferman R.S. Immunologic responses of experimental animals to green algae. J. Allergy. 1969;43:191–199. doi: 10.1016/0021-8707(69)90062-8. [PubMed] [CrossRef] [Google Scholar]

144. Komárek J., Anagnostidis K. Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl H., Gärtner G., Heynig H., Mollenhauer D., editors. Süsswasserflora von Mitteleuropa. Volume 19/1. 3 Gesundheitliche Bedeutung v; Jena, Germany: Stuttgart, Germany: Lübeck, Germany: Ulm, Germany: 1998. 548p [Google Scholar]

145. Komárek J., Anagnostidis K. Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Büdel B., Gärtner G., Krienitz L., Schagerl M., editors. Süsswasserflora von Mitteleuropa. Volume 19/2. Elsevier; München, Germany: 2005. 759p [Google Scholar]

146. Komárek J. Cyanoprokaryota. In: Büdel B., Gärtner G., Krienitz L., Schagerl M., editors. Süßwasserflora v. Mitteleuropa. Volume 19/3. Springer Spektrum; Heidelberg, Germany: 2013. 1130p [Google Scholar]

147. Champion R.H. Atopic Sensitivity to Algae and Lichens. Br. J. Derm. 1971;85:551–557. doi: 10.1111/j.1365-2133.1971.tb14081.x. [PubMed] [CrossRef] [Google Scholar]

148. Prinsep M.R., Moore R.E., Levine I.A., Patterson G.M.L. Westiellamide, a Bistratamide-Related Cyclic Peptide from the Blue-Green Alga Westiellopsis prolifica. J. Nat. Prod. 1992;55:140–142. doi: 10.1021/np50079a022. [PubMed] [CrossRef] [Google Scholar]

149. Graber M.A., Gerwick W.H. Kalkipyrone, a toxic gamma-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J. Nat. Prod. 1998;61:677–680. doi: 10.1021/np970539j. [PubMed] [CrossRef] [Google Scholar]

150. Fromme H. Toxinbildende Cyanobakterien (Blaualgen) in bayerischen Gewässern. Volume 125. Bayerisches Landesamt für Umwelt; Augsburg, Germany: 2006. 3 Gesundheitliche Bedeutung von Cyanobakterientoxinen in Badegewässern; pp. 27–48. Massenentwicklungen, Gefährdungspotential, wasserwirtschaftlicher Bezug. [Google Scholar]

151. Humpage A. Toxin types, toxicokinetics and toxicodynamics. In: Hudnell H.K., editor. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Volume 619. Springer; New York, NY, USA: 2008. pp. 383–415. (Advances in Experimental Medicine and Biology Series). [Google Scholar]

152. Dubey S., Dixit A., Boswal M.V. Seasonal Distribution of Aero Algal Allergens in the Wetlands of Kanpur. Bioscan. 2010;3:673–680. [Google Scholar]

153. Bernstein I.L., Safferman R.S. Clinical sensitivity to green algae demonstrated by nasal challenge and in-vitro tests of immediate hypersensitivity. J. Allergy. 1973;51:22–28. doi: 10.1016/0091-6749(73)90004-3. [PubMed] [CrossRef] [Google Scholar]

154. Bernstein I.L., Safferman R.S. Viable Algae in House Dust. Nature. 1970;227:851–852. doi: 10.1038/227851a0. [PubMed] [CrossRef] [Google Scholar]

155. Van de Lustgraaf B., Klerkx J.H.H.M., van Bronswijk J.E.M.H. Autotrophic organisms in mattress dust in The Netherlands. Acta Bot. Neerl. 1978;27:125–128. doi: 10.1111/j.1438-8677.1978.tb00267.x. [CrossRef] [Google Scholar]

156. Pandkar J.T. Fan Dust Samples—A New Approach to Aero-phycological Sampling. Biosci. Biotechnol. Res. Asia. 2011;8:795–799. doi: 10.13005/bbra/937. [CrossRef] [Google Scholar]

157. Chougule P.M., Andoji Y.S. Isolation and identification of house dust micro-algae from Sangli district. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2016;1:237–240. [Google Scholar]

158. Pandkar J.T. Report on aero-algal form from Konkan coastal area. Ann. Plant. Sci. 2017;6:1772–1774. [Google Scholar]

159. Mulec J., Kosi G. Lampenflora algae and methods of the growth control. J. Cave Karst Stud. 2009;71:109–115. [Google Scholar]

160. Albertano P., Bellezza S. Cytochemistry of cyanobacterial exopolymers in biofilms from Roman hypogea. Nova Hedwig. Beih. 2001;123:501–518. [Google Scholar]

161. Evgenievna M.S. Lampenflora of Novoafonskaya Cave. Научный журнал КубГАУ 2015;113:196–207. [Google Scholar]

162. Popkova A., Mazina S., Lashenova T. Phototrophic communities of Ahshtyrskaya Cave in the condition of artificial light. Ecol. Montenegrina. 2019;23:8–19. doi: 10.37828/em.2019.23.2. [CrossRef] [Google Scholar]

163. Barberousse H., Lombardo R.J., Tell G., Couté A. Factors involved in the colonisation of building façades by algae and cyanobacteria in France. Biofouling. 2006;22:69–77. doi: 10.1080/08927010600564712. [PubMed] [CrossRef] [Google Scholar]

164. Coutinho M.A.G.L.D. Ph.D. Thesis. Lisboa University; Lisbon, Portugal: 2015. Biological Colonization on Majolica Glazed Tiles: Biodeterioration, Bioreceptivity and Mitigation Strategies.99p [Google Scholar]

165. John D.M. Algal growths on buildings: A general review and methods of treatment. Biodeterior. Abstr. 1988;2:81–102. [Google Scholar]

166. Adhikary S.P., Satapathy D.P. Tolypothrix byssoidea (Cyanophyceae/Cyanobacteria) from temple rock surfaces of coastal Orissa, India. Nova Hedwig. 1996;62:419–423. [Google Scholar]

167. Tripathy P., Roy A., Adhikary S.P. Survey of epilithic blue-green algae (cyanobacteria) from temples of India and Nepal. Algol. Stud. 1997;87:43–57. doi: 10.1127/algol_stud/87/1997/43. [CrossRef] [Google Scholar]

168. Barberousse H., Tell G., Yéprémian C., Couté A. Diversity of algae and cyanobacteria growing on building façades in France. Algol. Stud. 2006;120:83–110. doi: 10.1127/1864-1318/2006/0120-0081. [CrossRef] [Google Scholar]

169. Darienko T., Gruber M., Pröschold T., Schagerl M. Terrestrial Microalgae on Viennese Buildings. Universität Wien; Vienna, Austria: 2013. 20p H-2081/2010. [Google Scholar]

170. Abe K., Ishiwatari T., Wakamatsu M., Aburai N. Fatty Acid Content and Profile of the Aerial Microalga Coccomyxa sp. Isol. Dry Environments. Appl. Biochem. Biotechnol. 2014;174:1724–1735. doi: 10.1007/s12010-014-1181-y. [PubMed] [CrossRef] [Google Scholar]

171. Hallmann C., Hoppert M., Mudimu O., Friedl T. Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: A case study using molecular approaches. J. Phycol. 2016;52:732–744. doi: 10.1111/jpy.12437. [PubMed] [CrossRef] [Google Scholar]

172. Denisow B., Weryszko-Chmielewska E. Pollen grains as airborne allergenic particles. Acta Agrobot. 2015;68:281–284. doi: 10.5586/aa.2015.045. [CrossRef] [Google Scholar]

173. Schlichting H.E., Jr. Meteorological conditions affecting the dispersal of airborne algae and protozoa. Lloydia. 1964;27:64–78. [Google Scholar]

174. Salisbury S.H. On the Cause of Intermittent and Remittent Fevers, with Investigations Which Tend to Prove That These Affections Are Caused by Certain Species of Palmellae. Am. J. Med. Sci. 1866;51:51–75. doi: 10.1097/00000441-186601000-00002. [CrossRef] [Google Scholar]

175. Ng T.P., Tan W.C., Lee Y.K. Occupational asthma in a pharmacist induced by Chlorella, a unicellular algae preparation. Respir. Med. 1994;88:555–557. doi: 10.1016/S0954-6111(05)80344-0. [PubMed] [CrossRef] [Google Scholar]

176. Tiberg E. Microalgae as Aeroplankton and Allergens. In: Boehm G., Leuschner R.M., Boehm G., Leuschner R.M., editors. Advances in Aerobiology, Proceedings of the 3rd International Conference on Aerobiology, Basel, Switzerland, 6–9 August 1986. Birkhäuser; Basel, Switzerland: London, UK: 1987. pp. 171–173. [Google Scholar]

177. Tiberg E., Rolesen W., Einarsson R., Dreborg S. Detection of Chlorella-specific IgE in mould-sensitized children. Allergy. 1990;45:481–486. doi: 10.1111/j.1398-9995.1990.tb00523.x. [PubMed] [CrossRef] [Google Scholar]

178. Pope A.M., Patterson R., Burge H., editors. Indoor Allergens: Assessing and Controlling Adverse Health Effects. National Academy Press; Washington, DC, USA: 1993. 321p [Google Scholar]

179. Pringle A. Asthma and the Diversity of Fungal Spores in Air. PLoS Pathog. 2013;9:e1003371. doi: 10.1371/journal.ppat.1003371. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Guo Q., Shao Q., Xu W., Rui L., Sumi R., Eguchi F., Li Z. Immunomodulatory and Anti-IBDV Activities of the Polysaccharide AEX from Coccomyxa gloeobotrydiformis. Mar. Drugs. 2017;15:36. doi: 10.3390/md15020036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Natsume C., Aoki N., Aoyama T., Senda K., Matsui M., Ikegami A., Tanaka K., Azuma Y.-T., Fujita T. Fucoxanthin Ameliorates Atopic Dermatitis Symptoms by Regulating Keratinocytes and Regulatory Innate Lymphoid Cells. Int. J. Mol. Sci. 2020;21:2180. doi: 10.3390/ijms21062180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Korneva L.G. Ecological aspects of mass development of Gonyostomum semen (Ehr.) Dies. (Raphidophyta) Int. J. Algae. 2001;3:40–54. doi: 10.1615/InterJAlgae.v3.i3.40. [CrossRef] [Google Scholar]

183. Gustafsson S., Hultberg M., Figueroa R.I., Rengefors K. On the control of HAB species using low biosurfactant concentrations. Harmful Algae. 2009;8:857–863. doi: 10.1016/j.hal.2009.04.002. [CrossRef] [Google Scholar]

184. Cronberg G., Lindmark G., Björk S. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes—An effect of acidification? Hydrobiologia. 1988;161:217–236. doi: 10.1007/BF00044113. [CrossRef] [Google Scholar]

185. Rengefors K., Pålsson C., Hansson L.A., Heiberg L. Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquat. Microb. Ecol. 2008;51:87–96. doi: 10.3354/ame01176. [CrossRef] [Google Scholar]

186. Willén E. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia. 2003;502:315–324. doi: 10.1023/B:HYDR.0000004289.92343.39. [CrossRef] [Google Scholar]

187. Pęczuła W. Mass development of the algal species Gonyostomum semen (Raphidophyceae) in the mesohumic Lake Płotycze (centraleastern Poland) Int. J. Oceanogr. Hydrobiol. 2007;36:136–172. [Google Scholar]

188. Pęczuła W., Poniewozik M., Szczurowska A. Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Central–Eastern Poland) Ann. Limnol. Int. J. Lim. 2013;49:301–308. doi: 10.1051/limn/2013059. [CrossRef] [Google Scholar]

189. Hagman C.H.C., Ballot A., Hjermann D.Ø., Skjelbred B., Brettum P., Ptacnik R. The occurrence and spread of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in Norwegian lakes. Hydrobiologia. 2015;744:1–14. doi: 10.1007/s10750-014-2050-y. [CrossRef] [Google Scholar]

190. Rengefors K., Weyhenmeyer G.A., Bloch I. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae. 2012;18:65–73. doi: 10.1016/j.hal.2012.04.005. [CrossRef] [Google Scholar]

191. Heise H.A. Symptoms of hay fever caused by algae. J. Allergy. 1949;20:383–385. doi: 10.1016/0021-8707(49)90029-5. [CrossRef] [Google Scholar]

192. Stewart I., Seawright A.A., Schluter P.J., Shaw G.R. Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin. BMC Dermatol. 2006;6:12. doi: 10.1186/1471-5945-6-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Cohen S.G., Reif C.B. Cutaneous sensitization to blue-green algae. J. Allergy. 1953;24:452–457. doi: 10.1016/0021-8707(53)90047-1. [PubMed] [CrossRef] [Google Scholar]

194. Soong F.S., Maynard E., Kirke K., Luke C. Illness associated with blue-green algae. Med. J. Aust. 1992;156:67. doi: 10.5694/j.1326-5377.1992.tb126392.x. [PubMed] [CrossRef] [Google Scholar]

195. McElhenny T.R., Bold H.C., Brown R.M., Jr., McGovern J.P. Algae: A cause of inhalant allergy in children. Ann. Allergy. 1963;20:739–743. [Google Scholar]

196. McElhenny T.R., McGovern J.P. Possible new inhalant allergens. Ann. Allergy. 1970;28:467–471. [PubMed] [Google Scholar]

197. Benaim-Pinto C. Airborne algae as possible etiologic factor in respiratory. J. Allergy Clin. Immunol. 1972;49:356–358. doi: 10.1016/0091-6749(72)90135-2. [CrossRef] [Google Scholar]

198. Mittal A., Agarwal M.K., Shivpuri D.N. Respiratory allergy to algae: Clinical aspects. Ann. Allergy. 1979;42:253–256. [PubMed] [Google Scholar]

199. Bernstein J.A., Ghosh D., Levin L.S., Zheng S., Carmichael W., Lummus Z., Bernstein I.L. Cyanobacteria: An unrecognized ubiquitous sensitizing allergen? Allergy Asthma Proc. 2011;32:106–110. doi: 10.2500/aap.2011.32.3434. [PubMed] [CrossRef] [Google Scholar]

200. Romay C., Armesto J., Remirez D., González R., Ledon N., García I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 1998;47:36–41. doi: 10.1007/s000110050256. [PubMed] [CrossRef] [Google Scholar]

201. Romay C., González R., Ledón N., Remirez D., Rimbau V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr. Protein Pept. Sci. 2003;4:207–216. doi: 10.2174/1389203033487216. [PubMed] [CrossRef] [Google Scholar]

202. Patel A., Mishra S., Ghosh P.K. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J. Biochem. Biophys. 2006;43:25–31. [PubMed] [Google Scholar]

203. Keilin D. On the life history of Helicosporidium parasiticum n. g. sp., a new species of protist parasite in the larvae of Dashelaea obscura Winn (Diptera: Ceratopogonidae) and in some other arthropods. Parasitology. 1921;13:97–113. doi: 10.1017/S003118200001235X. [CrossRef] [Google Scholar]

204. Tartar A., Boucias D.G., Adams B.J., Becnel J.J. Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta) Int. J. Syst. Evol. Microbiol. 2002;52:273–279. doi: 10.1099/00207713-52-1-273. [PubMed] [CrossRef] [Google Scholar]

205. Lass-Flörl C., Mayr A. Human Protothecosis. Clin. Microbiol. Rev. 2007;20:230–242. doi: 10.1128/CMR.00032-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Krüger W. Kurze Charakteristik einiger niedrerer Organismen im Saftfluss der Laubbäume. Hedwigia. 1894;33:241–266. [Google Scholar]

207. Nadakavukaren M.J., McCracken D.A. Prototheca: An alga or a fungus? J. Phycol. 1973;9:113–116. doi: 10.1111/j.0022-3646.1973.00113.x. [CrossRef] [Google Scholar]

208. Kano R. Emergence of Fungal-Like Organisms: Prototheca. Mycopathologia. 2020;185:747–754. doi: 10.1007/s11046-019-00365-4. [PubMed] [CrossRef] [Google Scholar]

209. Arnold P., Ahearn D.G. The systematics of the genus Prototheca with a description of a new species P. filamenta. Mycologia. 1972;64:265–275. doi: 10.1080/00275514.1972.12019261. [CrossRef] [Google Scholar]

210. Pore S., D’Amato F., Ajello L. Fissuricella gen. nov.: A new taxon for Prototheca filamenta. Sabouraudia. 1977;15:69–78. doi: 10.1080/00362177785190121. [PubMed] [CrossRef] [Google Scholar]

211. Nadakavukaren M.J., McCracken D.A. Prototheca filamenta: A fungus not an alga. Mycopathologia. 1975;57:89–91. doi: 10.1007/BF01365709. [CrossRef] [Google Scholar]

212. Guého E., Smith M.T., De Hoog G.S., Billon-Grand G., Christen R., van der Vegte W.B. Contributions to a revision of the genus Trichosporon. Antonie Leeuwenhoek. 1992;61:289–316. doi: 10.1007/BF00713938. [PubMed] [CrossRef] [Google Scholar]

213. Guého E., Improvisi L., Dupont B., De Hoog G.S. Trichosporon on humans: A practical account: Trichosporon am Menschen: Eine Darstellung für die Praxis. Mycoses. 1994;37:3–10. doi: 10.1111/j.1439-0507.1994.tb00277.x. [PubMed] [CrossRef] [Google Scholar]

214. Butler E. Radiation-induced chlorophyll-less mutants of Chlorella. Science. 1954;120:274–275. doi: 10.1126/science.120.3111.274. [PubMed] [CrossRef] [Google Scholar]

215. Frese K., Gedek B. Ein Fall von Protothecosis beim Reh. Berl. Munch. Tierarztl. Wochenschr. 1968;9:174–178. [PubMed] [Google Scholar]

216. Pore S. Nutritional basis for relating Prototheca and Chlorella. Can. J. Microbiol. 1972;18:1175–1177. doi: 10.1139/m72-183. [PubMed] [CrossRef] [Google Scholar]

217. Joshi K., Gavin J., Wheeler E. The ultrastructure of Prototheca wickerhamii. Mycopathologia. 1975;56:9–13. doi: 10.1007/BF00493576. [PubMed] [CrossRef] [Google Scholar]

218. Ewing A., Brubaker S., Somanchi A., Yu E., Rudenko G., Reyes N., Espina K. 16S and 23S plastid RDNA phylogenies of Prototheca species and their auxanographic phenotypes. J. Phycol. 2014;50:765–769. doi: 10.1111/jpy.12209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Yan D., Wang Y., Murakami T., Shen Y., Gong J., Jiang H., Smith D.R., Pombert J.-F., Dai J., Wu Q. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae. Sci. Rep. 2015;5:17211. doi: 10.1038/srep17211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Guiry M.D. Prototheca W. Krüger, 1894. In: Guiry G.M., editor. AlgaeBase. World-Wide Electronic Publication; National University of Ireland; Galway, Ireland: 2020. [(accessed on 22 February 2021)]. Available online: http://www.algaebase.org/search/genus/detail/?genus_id=44581 [Google Scholar]

221. Koenig D., Ward H. Prototheca zopfii Kruger strain UMK-13 growth on acetate or n-alkanes. Appl. Environ. Microbiol. 1983;45:333–336. doi: 10.1128/aem.45.1.333-336.1983. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. El-Ani A. Life cycle and variation of Prototheca wickerhamii. Science. 1967;156:1501–1503. doi: 10.1126/science.156.3781.1501. [PubMed] [CrossRef] [Google Scholar]

223. Pore S. Prototheca taxonomy. Mycopathologia. 1985;90:129–139. doi: 10.1007/BF00436728. [CrossRef] [Google Scholar]

224. Sudman M., Kaplan W. Identification of the Prototheca species by immunofluorescence. Appl. Microbiol. 1973;25:981–990. doi: 10.1128/am.25.6.981-990.1973. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Roesler U., Möller A., Hensel A., Baumann D., Truyen U. Diversity within the current algal species Prototheca zopfii: A proposal for two Prototheca zopfii genotypes and description of a novel species, Prototheca blaschkeae sp. nov. Int. J. Syst. Evol. Microbiol. 2006;56:1419–1425. doi: 10.1099/ijs.0.63892-0. [PubMed] [CrossRef] [Google Scholar]

226. Satoh K., Ooe K., Nagayama H., Makimura K. Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin. Int. J. Syst. Evol. Microbiol. 2010;60:1236–1240. doi: 10.1099/ijs.0.016402-0. [PubMed] [CrossRef] [Google Scholar]

227. Masuda M., Hirose N., Ishikawa T., Ikawa Y., Nishimura K. Prototheca miyajii sp. nov., isolated from a patient with systemic protothecosis. Int. J. Syst. Evol. Microbiol. 2016;66:1510–1520. doi: 10.1099/ijsem.0.000911. [PubMed] [CrossRef] [Google Scholar]

228. Morandi S., Cremonesi P., Povolo M., Capra E., Silvetti T., Castiglioni B., Ribeiro M.G., Alves A.C., da Costa G.M., Luini M., et al. Prototheca blaschkeae subsp. brasiliensis subsp. nov., isolated from cow milk. Int. J. Syst. Evol. Microbiol. 2017;67:3865–3871. doi: 10.1099/ijsem.0.002209. [PubMed] [CrossRef] [Google Scholar]

229. Roesler U., Scholz H., Hensel A. Emended phenotypic characterization of Prototheca zopfii: A proposal for three biotypes and standards for their identification. Int. J. Syst. Evol. Microbiol. 2003;53:1195–1199. doi: 10.1099/ijs.0.02556-0. [PubMed] [CrossRef] [Google Scholar]

230. Von Bergen M., Eidner A., Schmidt F., Murugaiyan J., Wirth H., Binder H., Maier T., Roesler U. Identification of harmless and pathogenic algae of the genus Prototheca by MALDI-MS. Proteom. Clin. Appl. 2009;3:774–784. doi: 10.1002/prca.200780138. [PubMed] [CrossRef] [Google Scholar]

231. Todd J.R., Matsumoto T., Ueno R., Murugaiyan J., Britten A., King J.W., Odaka Y., Oberle A., Weise C., Roesler U., et al. Medical phycology 2017. Med. Mycol. 2017;56:188–204. doi: 10.1093/mmy/myx162. [PubMed] [CrossRef] [Google Scholar]

232. Lassa H., Jagielski T., Malinowski E. Effect of Different Heat Treatments and Disinfectants on the Survival of Prototheca zopfii. Mycopathologia. 2011;171:177–182. doi: 10.1007/s11046-010-9365-7. [PubMed] [CrossRef] [Google Scholar]

233. Kwiecinski J. Biofilm formation by pathogenic Prototheca algae. Lett. Appl. Microbiol. 2015;61:511–517. doi: 10.1111/lam.12497. [PubMed] [CrossRef] [Google Scholar]

234. Scaccabarozzi L., Turchetti B., Buzzini P., Pisoni G., Bertocchi L., Arrigoni N., Boettcher P., Bronzo V., Moroni P. Short Communication: Isolation of Prototheca Species Strains from Environmental Sources in Dairy Herds. J. Dairy Sci. 2008;91:3474–3477. doi: 10.3168/jds.2008-1115. [PubMed] [CrossRef] [Google Scholar]

235. Roque K., Lim G.-D., Jo J.-H., Shin K.-M., Song E.-S., Gautam R., Kim C.-Y., Lee K., Shin S., Yoo H.-S., et al. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings. J. Vet. Sci. 2016;17:531–538. doi: 10.4142/jvs.2016.17.4.531. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Clark C.S., Linnemann C.C., Jr., Gartside P.S., Phair J.P., Blacklow N., Zeiss C.R. Serologic Survey of Rotavirus, Norwalk Agent and Prototheca wickerhamii in Wastewater Workers. Am. J. Public Health. 1985;75:83–85. doi: 10.2105/AJPH.75.1.83. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Rogers R.J., Connole M.D., Norton J., Thomas A., Ladds P.W., Dickson J. Lymphadenitis of cattle due to infection with green algae. J. Comp. Pathol. 1980;90:1–9. doi: 10.1016/0021-9975(80)90023-7. [PubMed] [CrossRef] [Google Scholar]

238. Jones J.W., McFadden H.W., Chandler F.W., Kaplan W., Conner D.H. Green algal infection in a human. Am. J. Clin. Pathol. 1983;80:102–107. doi: 10.1093/ajcp/80.1.102. [PubMed] [CrossRef] [Google Scholar]

239. Kaplan W., Chandler F.W., Choudary C., Ramachandran P.K. Disseminated Unicellular Green Algal Infection in Two Sheep in India. Am. J. Trop. Med. Hyg. 1983;32:405–411. doi: 10.4269/ajtmh.1983.32.405. [PubMed] [CrossRef] [Google Scholar]

240. Le Net J.-L., Fadl A.M., Saint-Martin G., Masson M.-T., Montois C., Longeart L. Granulomatous Enteritis in a Dromedary (Camelus dromedarius) Due to Green Algal Infection. Vet. Pathol. 1993;30:370–373. doi: 10.1177/030098589303000406. [PubMed] [CrossRef] [Google Scholar]

241. Ramírez-Romero R., Rodríguez-Tovar L.E., Nevárez-Garza A.M., López A. Chlorella Infection in a Sheep in Mexico and Minireview of Published Reports from Humans and Domestic Animals. Mycopathologia. 2010;169:461–466. doi: 10.1007/s11046-010-9287-4. [PubMed] [CrossRef] [Google Scholar]

242. Hafner S., Brown C.C., Zhang J. Green Algal Peritonitis in 2 Cows. Vet. Pathol. 2012;50:256–259. doi: 10.1177/0300985812450722. [PubMed] [CrossRef] [Google Scholar]

243. Hart J., Mooney L., Arthur I., Inglis T.J.J., Murray R. First case of Chlorella wound infection in a human in Australia. New Microbe New Infect. 2014;2:132–133. doi: 10.1002/nmi2.50. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Fujimoto M., Inaba Y., Takahashi T., Nakanishi G., Muraosa Y., Yahiro M., Kamei K., Murata S.-I. Image Gallery: Granulomatous dermatitis due to infection with the chlorophyllic green alga Desmodesmus. Br. J. Dermatol. 2018;179:167. doi: 10.1111/bjd.17007. [PubMed] [CrossRef] [Google Scholar]

245. Yu J., Li Z., Brand J.J. Characterization of a green alga isolated from infected human external tissue. Phycol. Res. 2009;57:251–258. doi: 10.1111/j.1440-1835.2009.00544.x. [CrossRef] [Google Scholar]

246. Westblade L.F., Ranganath S., Dunne W.M., Jr., Burnham C.-A.D., Fader R., Ford B.A. Infection with a Chlorophyllic Eukaryote after a Traumatic Freshwater Injury. N. Engl. J. Med. 2015;372:982–984. doi: 10.1056/NEJMc1401816. [PubMed] [CrossRef] [Google Scholar]

247. Yanong R.P.E., Francis-Floyd R., Curtis E., Klinger R.E., Cichra M.F., Berzins I.K. Algal dermatitis in cichlids. J. Am. Vet. Med. Assoc. 2002;220:1353–1358. doi: 10.2460/javma.2002.220.1353. [PubMed] [CrossRef] [Google Scholar]

248. Stevenson R.N., South R. Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland. Br. Phycol. J. 1974;9:319–329. doi: 10.1080/00071617400650391. [CrossRef] [Google Scholar]

249. Kerney R., Kim E., Hangarter R.P., Heiss A.A., Bishop C.D., Hall B.K. Intracellular invasion of green algae in a salamander host. Proc. Natl. Acad. Sci. USA. 2011;108:6497–6502. doi: 10.1073/pnas.1018259108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. Nowack E.C.M., Melkonian M. Endosymbiotic associations within protists. Philos. Trans. R. Soc. B. 2010;365:699–712. doi: 10.1098/rstb.2009.0188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Song C., Murata K., Suzaki T. Intracellular symbiosis of algae with possible involvement of mitochondrial dynamics. Sci. Rep. 2017;7:1221. doi: 10.1038/s41598-017-01331-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Hofbauer W.K. Biofilme mit Amöben, Bakterien und Pilzen im gebauten Umfeld des Menschen. Bauphysik. 2018:396–404. doi: 10.1002/bapi.201800011. [CrossRef] [Google Scholar]

253. Beattie T.K., Seal D.V., Tomlinson A., McFadyen A.K., Grimason A.M. Determination of Amoebicidal Activities of Multipurpose Contact Lens Solutions by Using a Most Probable Number Enumeration Technique. J. Clin. Microbiol. 2003;41:2992–3000. doi: 10.1128/JCM.41.7.2992-3000.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

254. Johnston S.P., Sriram R., Qvarstrom Y., Roy S., Verani J., Yoder J., Lorick S., Roberts J., Beach M.J., Visvesvara G. Resistance of Acanthamoeba Cysts to Disinfection in Multiple Contact Lens Solutions. J. Clin. Microbiol. 2009;47:2040–2045. doi: 10.1128/JCM.00575-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

255. Verani J.R., Lorick S.A., Yoder J.S., Beach M.J., Braden C.R., Roberts J.M., Conover C.S., Chen S., McConnell K.A., Chang D.C., et al. National Outbreak of Acanthamoeba Keratitis Associated with Use of a Contact Lens Solution, United States. Emerg. Infect. Dis. 2009;15:1236–1242. doi: 10.3201/eid1508.090225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

256. Kilvington S., Lam A. Development of Standardized Methods for Assessing Biocidal Efficacy of Contact Lens Care Solutions against Acanthamoeba Trophozoites and Cysts. Investig. Ophthalmol. Vis. Sci. 2013;54:4527–4537. doi: 10.1167/iovs.13-11927. [PubMed] [CrossRef] [Google Scholar]

257. Lakhundi S., Khan N.A., Siddiqui R. Inefficacy of Marketed Contact Lens Disinfection Solutions Against Keratitits-causing Acanthamoeba castellanii Belonging to the T4 Genotype. Exp. Parasitol. 2014;141:122–128. doi: 10.1016/j.exppara.2014.03.018. [PubMed] [CrossRef] [Google Scholar]

258. Molnárka G., Koppány A., Preisich K. The Methodology in Visual Examinations in Building Pathology. Hung. Electr. J. 2001;10:1–9. [Google Scholar]

259. Guillitte O. Bioreceptivity: A new concept for building ecology studies. Sci. Total Environ. 1995;167:215–220. doi: 10.1016/0048-9697(95)04582-L. [CrossRef] [Google Scholar]

260. Koch G.H., Brongers M.P.H., Thompson N.G., Virmani Y.P., Payer J.H. Corrosion Cost and Preventive Strategies in the United States. United States, Federal Highway Administration, National Technical Information Service; Springfield, MO, USA: 2002. pp. 1–82. Final Report. [Google Scholar]

261. Singh A.K. Microbially Induced Corrosion and its Mitigation. Springer; Singapore: 2020. 129p. eBook. [CrossRef] [Google Scholar]

262. Caneva G., Nugari M.P., Salvadori O. Biology in the Conservation of Works of Art. International Centre for the Study of the Preservation and the Restoration of Cultural Property ICCROM; Rome, Italy: 1991. 182p [Google Scholar]

263. Künzel H.M., Krus M., Fitz C., Hofbauer W.K., Scherer C., Breuer K. Accelerated test procedure to assess the microbial growth resistance of exterior finishes; Proceedings of the XII DBMC international conference on durability of building materials and components; Porto, Portugal. 12–15 April 2011; pp. 1–8. [Google Scholar]

264. Mohr K.I., Rosenkranz H., Friedl T. Im Bunker auf Helgoland: Vielfalt von Biofilmalgen unter Lichtstress; Proceedings of the Tagung der Sektion Phykologie der Deutschen Botanischen Gesellschaft; Wittenberg, Germany. 3 March–2 April 2008; Jena, Germany: Programm & Abstracts, Stiftung Leucorea; 2008. pp. 22–23. [Google Scholar]

265. Tran H., Govin A., Guyonnet R., Grosseau P., Lors C., Garzia-Diaz E., Damidot D., Devès O., Ruot B. Influence of intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. Int. Biodeterior. Biodegrad. 2012;70:31–39. doi: 10.1016/j.ibiod.2011.10.017. [CrossRef] [Google Scholar]

266. Fassier M., Faugeron C., Gloaguen V., Ducroquetz C., Dupont O. Behaviour of Roofing Materials Facing to Micro-Organisms. Green Sustain. Chem. 2013;3:8–14. doi: 10.4236/gsc.2013.31002. [CrossRef] [Google Scholar]

267. Venzmer H. Hydrophobie begünstigt Algenbesiedlung. B + B Bauen im Bestand. 2013;36:38–43. [Google Scholar]

268. D’Orazio M., Cursio G., Graziani L., Aquilanti L., Osimani A., Clementi F., Yéprémian C., Lariccia V., Amoroso S. Effects of water absorption and surface roughness on the bioreceptivity of ETICS comnpared to clay bricks. Build. Environ. 2014;77:20–28. doi: 10.1016/j.buildenv.2014.03.018. [CrossRef] [Google Scholar]

269. Frahm J.-P. Nitrophile Moose und Flechten nehmen zu. Überdüngung Und Versalzung Durch Katalysatoren? Biol. Unserer Zeit. 2008;38:94–101. doi: 10.1002/biuz.200810362. [CrossRef] [Google Scholar]

270. Garty J. Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 1990;68:1349–1353. doi: 10.1139/b90-171. [CrossRef] [Google Scholar]

271. Warscheid T., Braams J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000;46:343–368. doi: 10.1016/S0964-8305(00)00109-8. [CrossRef] [Google Scholar]

272. Rosado T., Gil M., Mirão J., Candeias A., Caldeira A.T. Oxalate biofilm formation in mural paintings due to microorganisms—A comprehensive study. Int. Biodeterior. Biodegrad. 2013;85:1–7. doi: 10.1016/j.ibiod.2013.06.013. [CrossRef] [Google Scholar]

273. Stoyneva-Gärtner M., Uzunov B., Gärtner G., Radkova M., Atanassov I., Atanasova R., Borisova C., Draganova P., Stoykova P. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria. Biotechnol. Biotechnol. Equip. 2019;33:559–578. doi: 10.1080/13102818.2019.1593887. [CrossRef] [Google Scholar]

274. Lefèvre M. La ‘Maladie Verte’ de Lascaux. Stud. Conserv. 1974;19:126–156. [Google Scholar]

275. Pohl W., Schneider J. Geochemische Einflüsse endolithischer Mikroorganismen auf Gesteinsoberflächen. Z. Dtsch. Ges. Geowiss. 2005;156:81–92. doi: 10.1127/1860-1804/2005/0156-0081. [CrossRef] [Google Scholar]

276. Leistner P., Kaufmann A., Koehler M., Würth M., Hofbauer W.K., Dittrich S., Mair S., Gordt A., Jäger M. Bauphysik urbaner Oberflächen. Bauphysik. 2018;40:358–368. doi: 10.1002/bapi.201800009. [CrossRef] [Google Scholar]

277. Schwerd R. Verweilverhalten biozider Wirkstoffe in Außenbeschichtungen im mehrjährigen Freilandversuch. Forsch. Bauphys. 2011;5:221. [Google Scholar]

278. Breuer K., Hofbauer W., Krueger N., Mayer F., Scherer C., Schwerd R., Sedlbauer K. Wirksamkeit und Dauerhaftigkeit von Bioziden in Bautenbeschichtungen. Bauphysik. 2012;34:170–182. doi: 10.1002/bapi.201200021. [CrossRef] [Google Scholar]

279. Gladis F., Schumann R., Karsten U. Wirksamkeit von Bioziden gegen Algenbewuchs an Fassaden; Proceedings of the Tagung der Sektion Phykologie der Deutschen Botanischen Gesellscha; Wittenberg, Germany. 3 March–2 April 2008; Jena, Germany: Programm & Abstracts, Stiftung Leucorea; 2008. pp. 35–36. [Google Scholar]

280. Walser A., Burkhardt M., Zuleeg S., Boller M. Gewässerbelastung durch Biozide aus Gebäudefassaden. GWA. 2008;88:639–647. [Google Scholar]

281. Burkhardt M., Junghans M., Zuleeg S., Schoknecht U., Lamani X., Bester K., Vonbank R., Simmler H., Boller M. Biozide in Gebäudefassaden—Ökotoxikologische Effekte, Auswaschung und Belastungsabschätzung für Gewässer. Umweltwiss. Schadst. Forsch. 2009;21:36–47. doi: 10.1007/s12302-008-0033-1. [CrossRef] [Google Scholar]

282. Fonsaeca A.J., Pina F., Macedo M.F., Leal N., Romanowska-Deskins A., Laiz L., Gómez-Bolea A., Saiz-Jimenez C. Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. Int. Biodeterior. Biodegrad. 2010;64:388–396. doi: 10.1016/j.ibiod.2010.04.006. [CrossRef] [Google Scholar]

283. Carvalhão M., Dionísio A. Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones. J. Cult. Herit. 2015;16:579–590. doi: 10.1016/j.culher.2014.10.004. [CrossRef] [Google Scholar]

284. Pozo-Antonio J.S., Rivas T., Fiorucci M.P., Ramil A., López A.J. Effectiveness of granite cleaning procedures in cultural heritage: A review. Sci. Total Environ. 2016;571:1017–1028. doi: 10.1016/j.scitotenv.2016.07.090. [PubMed] [CrossRef] [Google Scholar]

285. Tran T.-H., Hoang N.-D. Estimation of algal colonization growth on mortar surface using a hybridization of machine learning and metaheuristic optimization. Sādhanā 2017;42:929–939. doi: 10.1007/s12046-017-0652-6. [CrossRef] [Google Scholar]

286. Guillitte O., Dreesen R. Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tool of building materials. Sci. Total Environ. 1995;167:365–374. doi: 10.1016/0048-9697(95)04596-S. [CrossRef] [Google Scholar]

287. Dubosc A., Escadeillas G., Blanc P.J. Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cem. Concr. Res. 2001;31:1613–1617. doi: 10.1016/S0008-8846(01)00613-5. [CrossRef] [Google Scholar]

288. Sulakato V., Lill I., Soekov E., Arhipova R., Witt E., Liisma E. Towards Nearly Zero-Energy Buildings through analysing reasons for degradation of facades. Procedia Econ. Financ. 2014;18:592–600. doi: 10.1016/S2212-5671(14)00980-0. [CrossRef] [Google Scholar]

289. Kalina T., Puncochárová M. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae) Algol. Stud. 1987;45:473–521. [Google Scholar]

290. Komárek J. Polynuclearity of vegetative cells in coccal green algae from the family Neochloridaceae. Arch. Protistenkd. 1989;137:255–273. doi: 10.1016/S0003-9365(89)80033-8. [CrossRef] [Google Scholar]

291. Deason T.R., Silva P.C., Watanabe S., Floyd G.L. Taxonomic status of the species of the green algal genus Neochloris. Plant Syst. Evol. 1991;177:213–219. doi: 10.1007/BF00937958. [CrossRef] [Google Scholar]

292. Andreyeva V.M. Terrestrial and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) NAUKA; St. Petersburg, Russia: 1998. 349p [Google Scholar]

293. An S.S., Friedl T., Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from IT-2 rDNA sequence comparisons. Plant Biol. 1999;1:418–428. doi: 10.1111/j.1438-8677.1999.tb00724.x. [CrossRef] [Google Scholar]

294. Karsten U., Friedl T., Schumann R., Hoyer K., Lembcke S. Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta) J. Phycol. 2005;41:557–566. doi: 10.1111/j.1529-8817.2005.00081.x. [CrossRef] [Google Scholar]

295. Tschaikner A., Gärtner G., Kofler W. Coelastrella aeroterrestrica sp. nov. (Chlorophyta, Scenedesmoideaea) a new, obviously often overlooked aeroterrestrial species. Algol. Stud. 2008;128:11–20. doi: 10.1127/1864-1318/2008/0128-0011. [CrossRef] [Google Scholar]

296. Neustupa J., Nemcová Y., Eliás M., Skaloud P. Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycol. Res. 2009;57:159–169. doi: 10.1111/j.1440-1835.2009.00534.x. [CrossRef] [Google Scholar]

297. Darienko T., Gustavs L., Mudimu O., Menendez C.R., Schumann R., Karsten U., Friedl T., Pröschold T. Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta) Eur. J. Phycol. 2010;45:79–95. doi: 10.1080/09670260903362820. [CrossRef] [Google Scholar]

298. Hegewald E., Wolf M., Keller A., Friedl T., Krienitz L. ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia. 2010;49:325–335. doi: 10.2216/09-61.1. [CrossRef] [Google Scholar]

299. Skaloud P., Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta) Mol. Phylogenet. Evol. 2010;54:36–46. doi: 10.1016/j.ympev.2009.09.035. [PubMed] [CrossRef] [Google Scholar]

300. Fucíková C., Lewis L.E. Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta) Fottea. 2012;12:83–93. doi: 10.5507/fot.2012.007. [CrossRef] [Google Scholar]

301. Calvo-Pérez Rodó J.D., Molinari-Novoa E.A. A nomenclatural and cultural note on Chlorella peruviana G. Chacón and other species of the genus Chlorella Beij. (Chlorellales, Chlorellaceae) The Biologist. 2015;13:71–74. [Google Scholar]

302. Darienko T., Gustavs L., Pröschold T. Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. J. Phycol. 2016;52:1125–1145. doi: 10.1111/jpy.12481. [PubMed] [CrossRef] [Google Scholar]

303. Wynne M.J., Hallan J.K. Reinstatement of Tetradesmus G. M. Smith (Sphaeropleales, Chlorophyta) Feddes Repert. 2016;126:83–86. doi: 10.1002/fedr.201500021. [CrossRef] [Google Scholar]

304. Watanabe S., Lewis L.A. Phylogenetic interpretation of light and electron microscopic features of selected members of the phylogroup Moewusinia (Chlorophyceae), with new generic taxonomy. Phycologia. 2017;56:329–353. doi: 10.2216/16-64.1. [CrossRef] [Google Scholar]

305. Darienko T., Pröschold T. The genus Jaagichlorella Reisigl (Trebouxiophyceae, Chlorophyta) and its close relatives: An evolutionary puzzle. Phytotaxa. 2019;388:47–68. doi: 10.11646/phytotaxa.388.1.2. [CrossRef] [Google Scholar]

306. Pröschold T., Darienko T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa. 2020;441:113–142. doi: 10.11646/phytotaxa.441.2.2. [CrossRef] [Google Scholar]

307. Guiry M.D., Guiry G.M. Algae Base. World-Wide Electronic Publication, National University of Ireland, Galway. [(accessed on 5 May 2021)];2021 Available online: https://www.algaebase.org