O que a invenção das máquinas térmicas representou para a Revolução Industrial?

A termodinâmica é uma área da física que estuda as leis que regem as relações entre as diferentes formas de energia e a transformação de um tipo de energia em outro. A termodinâmica causou importantes impactos no avanço da tecnologia e, portanto, no desenvolvimento da civilização. As máquinas térmicas impulsionaram, por exemplo, a Revolução Industrial.

Hoje, muitas máquinas que fazem parte do nosso dia-a-dia operam segundo princípios termodinâmicos (automóvel, geladeira, caldeira, freezer, ar-condicionado, etc.).

Estudaremos a seguir o funcionamento dos refrigeradores - ou geladeiras -, que podem ser considerados como um tipo de máquina térmica, pois há vários princípios físicos em uma máquina que utiliza a vaporização de uma substância (no caso, o gás refrigerante) para retirar calor dos seus compartimentos. Ou seja, para diminuir sua temperatura interna.

Os primeiros refrigeradores, semelhantes aos que temos hoje, surgiram na década de 1850, mas foi só no início do século 20 que eles começaram a ser adquiridos pelas famílias, para uso doméstico.

O refrigerador foi uma invenção importante, pois, antigamente, o armazenamento e o transporte de alimentos perecíveis eram muito difíceis, exatamente pelo fato de não existir uma máquina que provocasse o resfriamento das substâncias e, também, mantivesse as temperaturas baixas. Nos dias atuais, podemos, por exemplo, conservar leite, carne, peixe, iogurte e frutas por um bom tempo, sem nenhum problema, obtendo uma maior durabilidade dos produtos.

O refrigerador doméstico e o ciclo de refrigeração

A geladeira funciona em ciclos, usando um gás refrigerante num circuito fechado. Assim, o gás circula permanentemente, sem perdas, a não ser que haja um vazamento no aparelho.

Antigamente, as geladeiras usavam o gás freon 12 (clorofluorcarbono), que é um gás apropriado para essa tarefa: tem elevado valor de calor latente de condensação e baixa temperatura de ebulição, além de não ser inflamável. Mas esse gás foi identificado como um dos que agridem a camada de ozônio. Desde então, os fabricantes vêm substituindo, gradativamente, o freon 12 por outros gases, com propriedades semelhantes e inofensivos para a camada de ozônio - como o HFC-134A.

As partes principais de uma geladeira doméstica são: compressor, condensador, válvula descompressora e evaporador. O compressor é movido por um motor elétrico (por isso você liga a geladeira na tomada). Ele tem a função de aumentar a pressão e a temperatura do gás refrigerante, fazendo-o circular pela tubulação interna do aparelho.

  • O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Quando o gás passa pelo condensador, perde calor para o meio externo, liquefazendo-se - ou seja, tornando-se líquido. Ao sair do condensador, um estreitamento da tubulação (tubo capilar) provoca uma diminuição da pressão. Assim, o elemento refrigerante, agora líquido e sob baixa pressão, chega à serpentina do evaporador (que tem diâmetro maior que o tubo capilar), se vaporiza e, assim, retira calor da região interna da geladeira.

É importante notar que o evaporador está instalado na parte superior (congelador) da geladeira. A partir desse ponto, o ciclo se reinicia e o gás refrigerante é puxado outra vez para o compressor.

Na segunda parte do texto -

O refrigerador como máquina térmica - 2

-estudaremos a termodinâmica desses ciclos.

O motor a vapor, também chamado de máquina a vapor e turbina a vapor, é um tipo de máquina térmica que explora a pressão do vapor. Todas as máquinas térmicas funcionam baseadas no princípio de que o calor é uma forma de energia, ou seja, pode ser utilizado para produzir trabalho, e seu funcionamento obedece às leis da termodinâmica. Embora a invenção do motor de combustão interna no final do século XIX parecesse ter tornado obsoleta a máquina a vapor, ela ainda hoje é muito utilizadaː por exemplo, nos reatores nucleares que servem para a geração de eletricidade.

No caso da máquina a vapor, o fluido de trabalho é o vapor de água sob alta pressão e a alta temperatura. O funcionamento da turbina a vapor baseia-se no principio de expansão do vapor, gerando diminuição na temperatura e energia interna; essa energia interna perdida pela massa de gás reaparece na forma de energia mecânica, pela força exercida contra um êmbolo.

História[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Triciclo Chariot à feu ("carrinho à fogo") ou Fardier ("carroça") de Joseph Cugnot.[1]

A primeira máquina a vapor relatada, foi a eolípila (também chamada de "bola de vento"), criada por Heron de Alexandria no século I. Em 1698, Thomas Savery, engenheiro militar inglês, criou um motor que leva seu nome que poderia ser utilizado dentro das fábricas, sendo considerado uma das evoluções iniciais da revolução industrial. Em 1712, Thomas Newcomen projetou uma nova máquina que poderia ser utilizada dentro de minas de carvão, a qual, apesar de mais lenta que as anteriores, podia tanto elevar água quanto cargas mais pesadas e tinha um custo de capital muito menor (uma vez que substituía os cavalos que eram usados no trabalho). Em 1769, Joseph Cugnot criou um triciclo[1] movido a vapor,[2] que é considerado o primeiro carro a vapor construído.[3] O veículo de Cugnot envolveu-se naquele que é tido como o primeiro acidente rodoviário motorizado da história.[4] Todavia, foi no ano de 1777 que o motor a vapor mais importante foi criado, quando James Watt, fabricante de instrumentos londrino, aperfeiçoou o motor a vapor de Newcomen. Após perceber uma falha no projeto da mesma, que era o tempo gasto, demasiadamente elevado, para ter o aquecimento, tanto do vapor quanto do combustível, em um mesmo cilindro. melhorando o projeto, criou assim um segundo cilindro.

Primeiras aplicações[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Uma das primeiras utilizações da máquina a vapor foi para fabricação de tecidos, onde a água acumulada nas minas de ferro e de carvão era aquecida para gerar vapor. Graças a essas máquinas, a produção de mercadorias aumentou muito. E os lucros dos burgueses donos de fábricas cresceram na mesma proporção. Por isso, os empresários ingleses começaram a investir na instalação de indústrias. As fábricas se espalharam rapidamente e provocaram mudanças tão profundas que os historiadores atuais chamam aquele período de Primeira Revolução Industrial[6][7][8] O modo de vida e a mentalidade de milhões de pessoas se transformaram, numa velocidade espantosa. O mundo novo do capitalismo, da cidade, da tecnologia e da mudança incessante triunfou. As máquinas a vapor bombeavam a água para fora das minas de carvão. Eram tão importantes quanto as máquinas que produziam tecidos. As carruagens viajavam a 12 quilômetros por hora e os cavalos, quando se cansavam, tinham de ser trocados durante o percurso. Um trem da época alcançava 45 quilômetros por hora e podia seguir centenas de quilômetros. Assim, a Revolução Industrial tornou o mundo mais veloz. Como essas máquinas substituíam a força dos cavalos, convencionou-se medir a potência desses motores em HP (do inglês horse power, "cavalo-força"). Entre os séculos XIX e XX também foram feitas experiências, de pouco sucesso, com aeronaves a vapor.[9]

Principais máquinas a vapor[editar | editar código-fonte]

Eolípila[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Eolípila em funcionamento.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Motor a vapor de James Watt.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

... a vapor em funcionamento.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Máquina a vapor de James Watt.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Era simplesmente uma caldeira de água, normalmente em formato de um sólido de revolução (como uma esfera) que girava mediante seu aquecimento. O vapor gerado era expelido por orifícios laterais que criavam um impulso na caldeira fazendo-a girar.

Motor a vapor de Thomas Savery[editar | editar código-fonte]

O motor a vapor de Thomas Savery foi um modelo rudimentar de motor inventado em 1698, com o objetivo de bombear água do interior das minas de carvão inundadas,[13] que deu origem ao motor a vapor, após ser aperfeiçoada por Thomas Newcomen em 1712 e por James Watt em 1777, o que possibilitou Richard Trevithick inventar a locomotiva em 1801.[14]

Motor a vapor de Thomas Newcomen[editar | editar código-fonte]

O motor a vapor de Thomas Newcomen foi inventado por Thomas Newcomen em 1712 e é também chamado de máquina atmosférica de Newcomen. O motor é operado pelo vapor de condensação introduzido no cilindro, criando assim um vácuo parcial, permitindo assim que a pressão atmosférica empurre o pistão para dentro do cilindro. Foi o primeiro dispositivo prático a aproveitar o vapor para produzir trabalho mecânico.[15] Os motores de Newcomen foram usados em toda a Grã-Bretanha e Europa, principalmente para bombear água para fora das minas. Centenas foram construídas ao longo do século XVIII.[16]

Motor a vapor de James Watt[editar | editar código-fonte]

O motor a vapor de James Watt era muito parecida com a de Newcomen, todavia existia uma segunda câmara ("câmara da condensação"), onde era criado o vácuo. Esta modificação foi muito eficaz, pois permitia que o pistão ficasse à mesma temperatura que o vapor, logo não haveria troca de calor entre eles, fazendo com que não houvesse perda de energia. Outra vantagem seria a de resfriamento, pois a câmara de condensação separada poderia ficar em uma temperatura mais baixa, necessitando de um resfriamento menor.[carece de fontes]

Locomotivas a vapor[editar | editar código-fonte]

A criação do motor a vapor fomentou o desenvolvimento de locomotivas a vapor e ferrovias, que também foram muito importantes para a revolução industrial. A ideia de um trem a vapor veio desde 1698 com Thomas Savery, porém só se tornou realidade após a criação da máquina de Watt. Entretanto James Watt não tinha o capital necessário para colocar em prática a sua máquina. Foi então que veio Richard Trevithick, que combinou a máquina de Watt e os transportes a carvão existentes (rudimentares) e criou a primeira locomotiva a vapor no ano de 1804 para a Penydarrem Iron Works no País de Gales.

Dentro do motor das locomotivas acontece a combustão do carbono e hidrogênio provenientes do carvão e do oxigênio do ar, produzindo calor. Porém um efeito negativo desta reação é ser uma grande causadora da poluição atmosférica. A energia química da reação é transformada em energia térmica que é, então, convertida em energia mecânica, que corresponde à força motriz de funcionamento das locomotivas a vapor.

Classificação[editar | editar código-fonte]

Há várias classificações para os motores a vapor, segue abaixo algumas delas:

  • Eixo do motor: os motores a vapor podem ser classificados por horizontais ou verticais, sendo esta classificação baseada na direção do eixo do cilindro.
  1. Horizontais: Motores com eixos do cilindro na horizontal;
  2. Verticais: Motores com os eixos do cilindro na vertical.
  • Velocidade do motor: existem três classificações para os motores a vapor dependendo de suas velocidades, sendo:
  1. Motores de Alta velocidade: motores com velocidade maior ou igual a 250 RPM (rotações por minuto);
  2. Motores de Velocidade Mediana: Motores com velocidade entre 100 a 250 RPM;
  3. Motores Lentos: Motores com velocidade menor que 100 RPM.
  • Trabalho baseado na expansão ou não expansão:
  1. Motores expansivos: O vapor é introduzido em todo o curso do pistão, a movimentação do mesmo é causa pela alta pressão do vapor que resulta na movimentação do vapor de uma ponta a outra do pistão até sair;
  2. Motores não expansivos: O vapor é introduzido em apenas uma parte do curso do pistão, em seu interior ocorre a expansão .

Motores expansivos possuem um rendimento maior que os não expansivos, porém o trabalho gerado por cada impulso pelo segundo é maior. Logo, se a eficiência é o mais importante deve-se usar um motor expansivo e se for necessário uma grande quantidade de energia o motor não expansivo é o recomendado.

  • Escape do motor:
  1. Para atmosfera: O vapor é liberado na atmosfera, cuja pressão é maior ou igual a pressão atmosférica, logo não é possível que este vapor seja reutilizado para outro ciclo do motor a vapor;
  2. Condensador: Estes motores liberam vapor a uma quantidade de 0.05 bar dentro dos condensadores, que é então condensado e mandado novamente para a caldeira pela bomba de alimentação(o vapor é reutilizado).
  • Número Cilindros:
  1. Motor a vapor simples: A conversão da energia térmica em energia mecânica acontece em apenas um estágio, tendo um cilindro e um pistão;
  2. Motor a vapor composto: A conversão da energia térmica em energia mecânica acontece em dois estágios, sendo um com alta pressão e outro com baixa pressão;
  3. Motor a vapor de expansão tripla: A conversão da energia térmica em energia mecânica acontece em três cilindros/pistões sucessivamente;
  4. Motor a vapor de expansão quadrupla: A conversão da energia térmica em energia mecânica acontece em quatro cilindros/pistões.
  • Número de estágios de expansão:
  1. Estágio individual
  2. Dois estágios
  3. Três estágios
  4. Quatro estágios
  • Campo de aplicação:
  1. Motores estacionários
  2. Motores marinhos
  3. Motores de locomotivas
  • Tipo de Administração (em inglês, Governing):
  1. Throttle Governing: É o método onde a velocidade do motor é controlado pelos meios da válvula dentro do tubo de vapor que regula a pressão do vapor entrando no motor.
  2. Automatic Cut-Off Governing: É o método no qual o administrador controla a porcentagem certa de vapor que deve entrar no cilindro, a pressão do vapor que entra no motor é mantida constante.

Eficiência[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Turbina a vapor.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

A eficiência de um motor a vapor pode ser representada pelo rendimento de máquinas térmicas, o qual depende basicamente de três grandezas:

  • o calor de uma fonte quente (Q1)
  • o calor de uma fonte fria (Q2)
  • trabalho gerado (W)

Pela primeira lei da termodinâmica, conservação de energia, temos a transformação de calor fornecido (Q1) em trabalho (W), energia que será utilizada, e uma outra energia representada por ΔU (variação de energia interna) que representa a energia perdida no processo, tendo assim a formula a seguir:

Porém, dado que em um ciclo completo o ΔU deve ser 0, é, portanto, possível descobrir o trabalho(W) substituindo este valor na formula acima, resultando em:

Desta forma, tem-se que o rendimento da máquina térmica é dado pela razão entre o trabalho gerado(W) com o calor retirado da fonte quente(Q1). Com base nas equações acima descritas, chega-se às seguintes equações para representar o rendimento:

Componentes[editar | editar código-fonte]

Construtivamente as partes principais são:

Carcaça[editar | editar código-fonte]

Feita de aço fundido e usinado internamente, montada na horizontal. A espessura da carcaça pode ultrapassar 150 milímetros na região de alta pressão. A função da carcaça é conter todo o conjunto rotativo, composto pelo eixo e pelas palhetas, e adicionar as tubeiras (nozzles) fixos.

Embora a função seja simples, o projeto mecânico da carcaça é bastante complexo e crítico para o bom funcionamento da turbina a vapor. A principal razão disto, é a alta temperatura que a turbina funciona, e as pequenas folgas entre as partes fixas e as partes rotativas.

Quando o vapor entra na turbina, a alta temperatura, ocorre uma grande dilatação do material, que pode facilmente exceder 15 milímetros dependendo do tamanho da turbina. Quando ocorre esta dilatação térmica, há o risco de as folgas entre as partes fixas e móveis serem reduzidas a ponto de haver roçamento, e consequentemente, desgaste ou mesmo ruptura das palhetas.

Também, devido a grande espessura da parede, há grandes gradientes térmicos. A parte interna, em contato com o vapor, se dilata mais, devido à alta temperatura. A parte externa da parede, em contato com o ambiente, se dilata menos. Essa diferença entre a dilatação do material na parte interna e externa da parede dá origem a fortes tensões que podem causar distorção ou fadiga térmica.

Mancais[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?
Ver artigo principal: Mancal

Na carcaça são montados um conjunto de 2 a 4 mancais, dependendo do tamanho da turbina. Os mancais podem ser ainda:

  • de guia: são os que suportam o peso do eixo e o carregamento radial. Permitem que ele tenha movimento giratório livre de atrito;
  • de escora: suportam a carga axial decorrente do "choque" do vapor com as palhetas. É montado no sentido horizontal.

Os mancais de turbinas a vapor não usam rolamentos. Eles são do tipo hidrodinâmico, em que o eixo flutua sobre um filme de óleo em alta pressão que é causada pelo próprio movimento do eixo, relativo à parede do mancal.

O mancal também tem um sistema de selagem de óleo e de vapor. Este sistema de selagem impede que vapores de óleo, ou de água, passem da turbina para o ambiente. Normalmente o sistema é constituído de uma série de labirintos que provocam uma perda de carga no fluxo de vapor, reduzindo o vazamento.

Rotor[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?
Ver artigo principal: Rotor

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

Rotor de turbina a vapor.

O rotor é a parte girante da turbina e responsável pela transmissão do torque ao acoplamento. No rotor são fixadas as palhetas, responsáveis pela extração de potência mecânica do vapor. O rotor é suportado pelos mancais, normalmente pelas extremidades. É fabricado com aços ligados e forjados. Os materiais que são empregados atualmente são ligas com altos percentuais de níquel, cromo ou molibdênio. Nas máquinas mais modernas, são feitos a partir de um lingote fundido à vácuo, e depois forjado.

O eixo deve ser cuidadosamente balanceado e livre de imperfeições superficiais, que podem funcionar com concentradoras de tensões, o que reduz a resistência à fadiga do eixo.

Em uma das extremidades do eixo é feito o acoplamento, seja a um gerador elétrico, ou a uma máquina de fluxo, como um ventilador, um compressor ou uma bomba. Mas, devido a necessidade de se obter uma rotação diferente no acoplamento, muitas vezes o eixo é ligado a uma caixa redutora de velocidade, onde a rotação da turbina é aumentada ou reduzida, para ser transmitida ao acoplamento.

Palhetas[editar | editar código-fonte]

As palhetas são perfis aerodinâmicos, projetados para que se obtenha em uma das faces uma pressão positiva, e na outra face uma pressão negativa. Da diferença de pressão entre as duas faces é obtida uma força resultante, que é transmitida ao eixo gerando o torque do eixo.

Labirintos[editar | editar código-fonte]

Os labirintos são peças aplicadas em turbinas a vapor com a finalidade de vedar a carcaça sem atritar. São fabricados na grande maioria em alumínio e são bipartidos radialmente para facilitar a manutenção da máquina. Internamente, eles são aplicados para garantir o rendimento da turbina. Nos casos em que há mais de um motor, o vapor não pode se dissipar dentro da carcaça para não perder energia e baixar o rendimento da máquina. Os labirintos também são utilizados na vedação da carcaça em relação ao ambiente externo, evitando também a dissipação do vapor para a atmosfera.

Nas turbinas de grande porte, há a injeção de vapor nos labirintos, por meio de uma tomada vinda da própria máquina, para equalizar as pressões e garantir a vedação da carcaça.

Dias atuais[editar | editar código-fonte]

Atualmente, a energia gerada pelo vapor não é mais utilizada como antigamente, tendo sido substituída pelas máquinas de combustão interna, pelos seguintes motivos:

  • Perda muito significativa de energia na queima do carvão (entre 80 e 90% de toda energia produzida pelo carvão não é utilizada), fazendo com que a eficiência da máquina a vapor seja bem inferior aos motores atuais;
  • O carvão é nocivo à natureza;
  • O transporte da matéria-prima é muito mais prático quando falamos em óleos combustíveis, que podem ser transportados por meio de tubos, do que o carvão que ocupa um espaço muito maior e é necessário que sejam transportados por navios ou trens;
  • Para que um trem movido a vapor possa operar, são necessárias vários horas para que o motor aqueça e possa ser operado. No caso de motores a diesel, este conseguem operar cerca de 1 minuto após acionados.

Entretanto, o vapor ainda é importante na geração de grande parte da energia elétrica de muitos países. Um exemplo são as usinas nucleares, que utilizam calor de reatores nucleares para produzir o vapor. Mais de 88% da energia elétrica dos Estados Unidos é gerada pelo vapor. Porém, não são mais utilizados motores a vapor, mas, sim, turbinas a vapor, cuja eficiência é maior.

O que a invenção das máquinas térmicas representou para a Revolução Industrial?
O que a invenção das máquinas térmicas representou para a Revolução Industrial?
Motor rotativo Quasiturbine configurado
para operar como motor a vapor.[19]
Num reator nuclear, o calor produzido pelas reações
no núcleo, gera vapor que movimenta uma turbina
acoplada a um gerador.

Ver também[editar | editar código-fonte]

  • Motor a vácuo
  • Motor elétrico
  • Motor Stirling

Referências

  1. a b People and Organizations: Explorations of Human-Centered Design. Autor: William B. Rouse. John Wiley & Sons, 2007, pág. 372, (em inglês) ISBN 9780470169551 Adicionado em 12/06/2018.
  2. Driveline Systems of Ground Vehicles: Theory and Design. Autores: Alexandr F. Andreev, Viachaslau Kabanau & Vladimir Vantsevich. CRC Press, 2010, pág, 01, (em inglês) ISBN 9781439817285 Adicionado em 12/06/2018.
  3. Bryan E. Porter (2011). «Handbook of Traffic Psychology». Academic Press. Consultado em 18 de novembro de 2019
  4. Sources of Power: How Energy Forges Human History. Autor: Manfred Weissenbacher. ABC-CLIO, 2009, pág. 206, (em inglês) ISBN 9780313356261 Adicionado em 12/06/2018.
  5. «24 September 1852». This Day in Aviation (em inglês). 24 de setembro de 2021. Consultado em 7 de julho de 2022
  6. Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam, Industry and Invention. [S.l.]: University Of Chicago Press. 185 páginas. ISBN 978-0-226-72634-2
  7. Hunter 1985
  8. Thomson, Ross (2009). Structures of Change in the Mechanical Age: Technological Invention in the United States 1790–1865. Baltimore, MD: The Johns Hopkins University Press. p. 34. ISBN 978-0-8018-9141-0
  9. Stephen Pope (13 de setembro de 2012). «A Steam-Powered Airplane, Anyone?». flyingmag.com (em inglês). Consultado em 7 de julho de 2022
  10. Marián Suman-Hreblay (2015). «Automobile Manufacturers Worldwide Registry». McFarland. Consultado em 18 de novembro de 2019
  11. United States. Congress. Senate. Committee on Public Works. Panel on Environmental Science and Technology (1972). «Alternatives to the Gasoline-powered Internal Combustion Engine: Hearing, Ninety-second Congress, Second Session». U.S. Government Printing Office (Google Livros). Consultado em 18 de novembro de 2019
  12. «Pritchard (1975 - 1975)». All Car Index. 9 de setembro de 2012. Consultado em 18 de novembro de 2019
  13. Savery, Thomas (1702). The Miner's Friend: Or, an Engine to Raise Water by Fire. England: At the Corner of Pope's Head-Alley in Cornhill. 65 páginas. Consultado em 27 de julho de 2017
  14. Rosen, Willian (2012). The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention. United States of America: University of Chicago Press. 185 páginas. ISBN 978-0-226-72634-2. Consultado em 27 de julho de 2017
  15. Morris, Charles R. Morris; illustrations by J.E. (2012). The dawn of innovation the first American Industrial Revolution 1st ed. New York: PublicAffairs. p. 42. ISBN 978-1-61039-049-1
  16. Schobert, Harold H. (2002). Energy and Society: An Introduction. Londres: CRC Press. 624 páginas. ISBN 9781560327677
  17. Rail: the records. Autor: John Marshall. Guinness Superlatives, 1985, pág. 115, (em inglês) ISBN 9780851124476 Adicionado em 12/06/2018.
  18. The pictorial history of railroads. Autor: J. N. Westwood. Gallery Books, 1988, pág. 128, (em inglês) ISBN 9780831768980 Adicionado em 12/06/2018.
  19. YouTube - 2011 Quasiturbine (1 bar - 15 psi) Steam at the Oregon Steam-up. (em inglês) Acessado em 02/07/2018.

Ligações externas[editar | editar código-fonte]

O que a invenção das máquinas térmicas representou para a Revolução Industrial?

  • (em inglês) Animation interativo
  • (em português) A História do Motor a vapor[ligação inativa]
  • animacion interactivo de la maquina de vapor, download [ligação inativa] (English, Spanish, German)
  • (em inglês) science.howstuffworks
  • (em português) Instituto de Física UFRGS,máquina a vapor,prof. Leila
  • (em inglês) Explainthatstuff
  • (em inglês) História do Aeolipile
  • Locomotivas a vapor,UNICAMP
  • Primeira Locomotiva no Brasil,MAITC
  • Instituto de Física UFRGS,Melissa
  • Instituto de Física UFRGS,máquinas térmicas,prof. Leila

Qual a importância das máquinas térmicas para a Revolução Industrial?

A vantagem fundamental das máquinas térmicas para a Revolução Industrial foi que elas permitiram aumentar a produção em uma escala nunca vista antes, isso permitiu que mais mercadorias fossem produzidas e a um custo menor.

Qual foi a importância das máquinas térmicas?

As máquinas térmicas foram fundamentais para o desenvolvimento tecnológico da humanidade, a começar pela Revolução Industrial, os meios de transporte e a produção de energia.

Qual a importância da invenção da máquina a vapor para a Revolução Industrial?

A invenção e constante aperfeiçoamento da máquina a vapor permitiu também o aumento da produtividade e custos reduzidos. A velocidade de rotação da máquina a vapor e o baixo custo da energia transformaram esta máquina num engenho de alta rendibilidade, a qual se tornou no símbolo da Revolução Industrial.

Qual o impacto da invenção das máquinas térmicas na sociedade?

Uma máquina térmica que mudou a vida humana foi a invenção da ​geladeira​, pois permite armazenar, transportar e conservar por mais tempo leite, carne, peixes, frutas, entre outros produtos perecíveis. Já o ar condicionado deixa o ambiente mais frio, amenizando o calor.