Qual é a ordem de transformação de energia que ocorre em uma hidrelétrica?

Mecânica

A utilização da energia cinética e potencial das águas é feita pela humanidade a tempos imemoriais, já que desde sempre se instalaram variados dispositivos nas margens e nos leitos dos rios.

Foi, porém, no século XIX que o aproveitamento dessa forma de energia se tornou mais atraente do ponto de vista econômico pois, com a invenção dos grupos turbinas-geradores de energia elétrica e a possibilidade do transporte de eletricidade a grandes distâncias, se conseguiu obter um elevado rendimento econômico desse aproveitamento.

A água é um fonte tradicional de energia.

A roda d’água horizontal – com uma potência de cerca de 0,3kW – surgiu, aproximadamente, no século 1. Por volta do século 4, a roda d´água vertical conseguiu aumentar a potência até cerca de 2kW. As rodas d´água eram usadas, principalmente, para moer cereais. Por volta do século 16, a roda d´água era a máquina mais importante e desempenhou um papel fundamental na industrialização da Europa. No século 17, a potência das rodas d´água já atingira níveis bastante elevados.

A partir das rodas d´água, essencialmente máquinas de conversão da energia hidráulica em energia mecânica, foram desenvolvidas posteriormente as usinas hidroelétricas. Um terço da energia elétrica do mundo é produzida por meios hidroelétricos. A seguir, serão descritas essas duas formas de conversão da energia proveniente do uso direto da água.

CONVERSÃO HIDROMECÂNICA

Qual é a ordem de transformação de energia que ocorre em uma hidrelétrica?

Podemos converter energia hidráulica em energia mecânica através da roda d´água. Existem rodas horizontais e verticais. A água, ao incidir sobre as pás de uma roda, exerce uma força que a move. O eixo da roda é ligado a um conjunto de engrenagens que move algum tipo de mecanismo como a moenda de cereais, de tecelagem, de serragem, de carga etc. O sistema de engrenagens serve para modificar a potência transmitida ou a velocidade do mecanismo final.

Devido a um desnível h, a água que desce por um duto tem sua energia potencial, U = mgh, convertida em energia cinética, K = mv2/2, que, por sua vez, é convertida em energia rotacional da roda. Assim, efetivamente, ocorre a conversão da energia potencial da água em energia cinética rotacional da roda. Existem situações em que não há um desnível, mas a água possui energia cinética suficiente para girar rodas, resultando também em conversão hidromecânica. Devido a dissipações resultantes do atrito entre as componentes do sistema, a energia rotacional não é exatamente igual a mgh, mas menor. As atuais turbinas são rodas modificadas de modo a aumentar a eficiência da máquina. Hoje em dia, as turbinas hidráulicas chegam a ter uma eficiência de 95%, isto é, 95% da energia hidráulica é convertida em energia mecânica.

CONVERSÃO HIDROELÉTRICA

A conversão da energia hidráulica em elétrica é feita em duas etapas: na primeira, a energia hidráulica é transformada em energia mecânica rotacional da turbina, e na Segunda, ocorre a conversão mecanoelétrica, isto é, essa energia mecânica é convertida em energia elétrica. A corrente e a voltagem geradas por uma usina são transmitidas e distribuídas por sistemas constituídos por grandes extensões de cabos, suportados por altas torres, pois, em geral, as usinas estão situadas em regiões relativamente afastadas dos centros consumidores.

A transformação da energia mecânica em energia elétrica se baseia no fenômeno de indução eletromagnética, descoberto por Michael Faraday em 1.831. Uma espira condutora colocada no campo magnético à B de um ímã permanente gira em torno de um eixo perpendicular a à B. Esse movimento provoca uma variação senoidal do fluxo de à B com o tempo através da espira, e consequentemente, uma corrente alternada AC é induzida nela. Se forem ligados dois fios aos extremos da espira, aparecerá uma tensão alternada entre eles. Pode-se também induzir corrente se, ao invés da espira, o ímã for girado em torno dela.

Os geradores elétricos utilizados em usinas de energia elétrica possuem, em geral, um eletroímã no lugar do ímã permanente, e um conjunto de bobinas que forma a armadura no lugar da espira. O eixo da turbina pode estar ligado ao eletroímã ou à armadura. Assim, quando a turbina gira, devido ao impacto da água, ela produz um movimento rotacional relativo entre o eletroímã ou da armadura determina a frequência da corrente alternada produzida. Desse modo, a frequência de 60Hz significa que o fluxo magnético através da armadura se alterna entre os valores positivos e negativos 60 vezes por segundo, e consequentemente, o mesmo ocorre com a corrente e a tensão. No Brasil, a frequência da rede elétrica é 60Hz enquanto que as do Paraguai e da Inglaterra são 50Hz.

Em geral, a tensão alternada produzida pelos geradores é relativamente baixa. Assim, para que se possa abastecer diferentes centros utilizando linhas de transmissão, essa tensão é aumentada até centenas ou milhares de kV por meio de transformadores. Ao atingir os centros de consumo, a tensão é reduzida, por exemplo, a algumas dezenas de kV, pelos transformadores das subestações e distribuída para o público.

Apesar da corrente produzida pelo método descrito ser alternada, ela pode ser retificada e transmitida como corrente contínua – DC. Uma inconveniência da adoção de DC é a necessidade de se usar retificadores na saída de usinas e alternadores antes das subestações, uma vez que os transformadores e motores em geral utilizam corrente alternada. Isso aumenta muito o custo de sua instalação. Entretanto, como a tensão é estável, as perdas nas linhas de transmissão são essencialmente por calor (por efeito Joule ou ôhmicas), enquanto que nas linhas AC existem grandes perdas por irradiação eletromagnética, além das ôhmicas.

A transmissão de corrente alternada utiliza três cabos enquanto que a de corrente contínua necessita apenas de dois. Esse é um aspecto que favorece a escolha de linhas DC. Para uma mesma tensão efetiva, a tensão pico AC é maior (da ordem de 30-40%) que a tensão DC, que é constante. Dessa maneira, tanto as torres de transmissão como os isoladores para linhas DC podem ser menores que para linhas AC. Entretanto, essas vantagens só se tornam economicamente compensadoras para transmissões a longas distâncias, maiores que 600km, já que o custo das instalações de retificação é bastante elevado. A energia elétrica a ser produzida pelo complexo de Itaipu será transmitida por linhas DC.

Existem, atualmente, linhas de transmissão supercondutores, nas quais as perdas ôhmicas são reduzidas quase que completamente para tensões DC, e bastante para tensões AC. O material com que as linhas são manufaturadas é um supercondutor cuja resistência é extremamente baixa para temperaturas da ordem de dezenas de kelvin. Entretanto, para que essas linhas possam ser utilizadas, é necessário superesfriá-las, o que significa que é preciso consumir energia para diminuir as perdas. Assim, torna-se importante um cálculo cuidadoso para se determinar as perdas totais durante a transmissão.

O potencial hidroelétrico brasileiro está avaliado em 213.000 MW, dos quais aproximadamente 10% estão instalados. A bacia do rio Paraná é a mais aproveitada de todas as bacias hidrográficas, que incluem as dos rios Amazonas, Tocantis, São Francisco, Uruguay e as do Atlântico NE, N, L, SE. A central de Ilha Solteira é ainda a maior hidroelétrica brasileira com 3.200 MW e a seguinte é a de Jupiá, com 1.400MW.

A potência da usina de Itaipu está projetada para 12.000MW, dez vezes a da usina nuclear Angra II.

Como a demanda da energia elétrica não é constante, existem períodos em que a energia produzida se torna ociosa, ou mesmo perdida. Assim, foram projetadas as usinas de bombeamento, que aproveitam esses períodos para operar bombas que transferem a água já circulada pelas turbinas a reservatórios adicionais à represa principal. Em períodos de demanda máxima – demanda pico – a água desses reservatórios extras também pode ser aproveitada para impulsionar turbinas geradoras. Esse método aumenta o aproveitamento das reservas naturais.

As usinas de pequeno porte, onde se aproveita uma queda d´água natural, produzem poucos impactos ambientais, uma vez que não há construção de represas. As usinas com reservatórios de acumulação e as de bombeamento, causam alteração não desprezível ao meio ambiente e ao ser humano. Sua construção requer o represamento da águas de um ou mais rios.

CONCLUSÃO

A utilização da energia é importante: na iluminação das casas, das cidades, nos serviços domésticos, nas indústrias e em quase todas as atividades do dia a dia do ser humano.

A utilização de várias formas de energia, além de trazer benefícios à Humanidade, causam também alguns alterações ambientais. Entre as alterações provocadas pela construção de uma usina de grande porte estão os impactos geomórficos (erosão, assoreamento), climatológicos, hídricos, geopolíticos; os efeitos no ambiente biológico como as modificações nas macro e microfloras terrestre e aquática, na fauna terrestre e ictiológica fluvial e na ecologia do sistemabiótico; e possíveis efeitos sócieconômicos-culturais.

Autoria: Débora Eitelwein

Veja também:

  • Energia Hidrelétrica
  • Potência e Energia Elétrica
  • Energia Cinética, Potencial e Mecânica

Assuntos relacionados:

Como ocorre a transformação de energia em uma usina elétrica?

A força da água em movimento é conhecida como energia potencial, essa água passa por tubulações da usina com muita força e velocidade, realizando a movimentação das turbinas. Nesse processo, ocorre a transformação de energia potencial (energia da água) em energia mecânica (movimento das turbinas).

Quais são os processos de transformação de energia?

Alguns tipos de Transformação de Energia Nesse sentido, a energia solar, eólica, térmica, hídrica ou de biomassa podem ser convertidas em energia elétrica. Na maioria destes processos, estas energias são convertidas primeiramente em energia mecânica, para só depois se tornarem energia elétrica.

Quais são os tipos de transformações de energia em uma hidrelétrica Brainly?

Resposta. Resposta: Quando a água passa pelas turbinas em uma usina hidrelétrica, ocorre a primeira transformação da energia potencial em energia cinética. Ao acionar a turbina, a energia cinética é transformada em energia mecânica.

Como é obtida a energia através da hidroeletricidade?

Hidroeletricidade é a energia elétrica obtida através movimentação de turbinas nas usinas hidroelétricas, movidas pela passagem das águas. O Brasil possui o terceiro maior potencial hidroelétrico do mundo, perdendo apenas para Rússia e China.