What behavioral changes happened over time to the rats who had their lateral hypothalamus destroyed?

26. After a time, rats who have had their lateral or ventromedial hypothalamus destroyed:

1. Aldridge JW, Berridge KC. Neural coding of pleasure: rose-tinted glasses of the ventral pallidum. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford: Oxford University Press; 2010. pp. 62–73. [Google Scholar]

2. Bard P. On emotional expression after decortication, with some remarks on certain theoretical views. Psychol Rev. 1934;41:309–329. [Google Scholar]

3. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1–25. [PubMed] [Google Scholar]

4. Berridge KC. Motivation concepts in behavioral neuroscience. Physiol Behav. 2004;81:179–209. [PubMed] [Google Scholar]

5. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 2007;191:391–431. [PubMed] [Google Scholar]

6. Berridge KC, Aldridge JW. Decision utility, the brain and pursuit of hedonic goals. Social Cogn. 2008;26:621–646. [PMC free article] [PubMed] [Google Scholar]

7. Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 2008;199:457–480. [PMC free article] [PubMed] [Google Scholar]

8. Bindra D. How adaptive behavior is produced: a perceptual-motivation alternative to response reinforcement. Behav Brain Sci. 1978;1:41–91. [Google Scholar]

9. Bolles RC. Reinforcement, expectancy, and learning. Psychol Rev. 1972;79:394–409. [Google Scholar]

10. Cabanac M. Physiological role of pleasure. Science. 1971;173:1103–1107. [PubMed] [Google Scholar]

11. Cannon WB. The James-Lange theory of emotion: a critical examination and an alternative theory. Am J Psychol. 1927;39:10–24. [Google Scholar]

12. Cheng JT, Schallert T, De Ryck M, Teitelbaum P. Warm-up along dimensions of movement in the ontogeny of exploration in rats and other infant mammals. Proc Natl Acad Sci USA. 1981;78:7226–7229. [PMC free article] [PubMed] [Google Scholar]

13. Chesire RM, Cheng JT, Teitelbaum P. Reversal of akinesia and release of festination by morphine or GABA applied focally to the nucleus reticularis tegmenti pontis. Behav Neurosci. 1984;98:739–742. [PubMed] [Google Scholar]

14. Craig W. Appetites and aversions as constituents of instincts. Biol Bull Woods Hole. 1918;34:91–107. [Google Scholar]

15. Cromwell HC, Berridge KC. Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res. 1993;624:1–10. [PubMed] [Google Scholar]

16. Davidson RJ, Sutton SK. Affective neuroscience: the emergence of a discipline. Cur Opin Neurobiol. 1995;5:217–224. [PubMed] [Google Scholar]

17. De Ryck M, Schallert T, Teitelbaum P. Morphine versus haloperidol catalepsy in the rat: a behavioral analysis of postural support mechanisms. Brain Res. 1980;201:143–172. [PubMed] [Google Scholar]

18. Dethier V. The hungry fly. Psychol Today. 1967;1:64–72. [Google Scholar]

19. Dickinson A, Balleine B. Hedonics: the cognitive-motivational interface. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford, U.K: Oxford University Press; 2010. pp. 74–84. [Google Scholar]

20. Faure A, Richard JM, Berridge KC. Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLoS One. 2010;5:e11223. [PMC free article] [PubMed] [Google Scholar]

21. Fentress JC. Development and patterning of movement sequences in inbred mice. In: Kiger J, editor. The biology of behavior. Corvallis: Oregon State University Press; 1972. pp. 83–132. [Google Scholar]

22. Fentress JC. Emergence of pattern in the development of mammalian movement sequences. J Neurobiol. 1992;23:1529–1556. [PubMed] [Google Scholar]

23. Golani I, Fentress JC. Early ontogeny of face grooming in mice. Dev Psychobiol. 1985;18:529–544. [PubMed] [Google Scholar]

24. Golani I, Wolgin DL, Teitelbaum P. A proposed natural geometry of recovery from akinesia in the lateral hypothalamic rat. Brain Res. 1979;164:237–267. [PubMed] [Google Scholar]

25. Grill HJ, Kaplan JM. Caudal brainstem participates in the distributed neural control of feeding. In: Stricker EM, editor. Neurobiology of food and fluid intake. New York: Plenum Press; 1990. pp. 125–149. [Google Scholar]

26. Grill HJ, Norgren R. The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res. 1978;143:263–279. [PubMed] [Google Scholar]

27. Heath RG. Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. J Nerv Mental Dis. 1972;154:3–18. [PubMed] [Google Scholar]

28. Heimer L, Van Hoesen GW. The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev. 2006;30:126–147. [PubMed] [Google Scholar]

29. Heimer L, Van Hoesen GW, Trimble M, Zahm DS. Anatomy of neuropsychiatry: the new anatomy of the basal forebrain and its implications for neuropsychiatric illness. Amsterdam: Elsevier: Academic Press; 2008. [Google Scholar]

30. Ho C-Y, Berridge KC. Hotspots for hedonic ‘liking’ and aversive ‘disliking’ in ventral pallidum. Soc Neurosci. 2009 Abstracts, ed2009. [Google Scholar]

31. Hoebel BG, Teitelbaum P. Hypothalamic control of feeding and self-stimulation. Science. 1962;135:375–377. [PubMed] [Google Scholar]

32. Hughlings Jackson J. In: Selected writings of John Hughlings Jackson. Taylor J, editor. London: Staples Press; 1958. [Google Scholar]

33. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702. [PubMed] [Google Scholar]

34. Kringelbach ML. The hedonic brain: a functional neuroanatomy of human pleasure. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford, U.K: Oxford University Press; 2010. pp. 202–221. [Google Scholar]

35. Kringelbach ML, Berridge KC. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci. 2009;13:479–487. [PMC free article] [PubMed] [Google Scholar]

36. Kringelbach ML, Berridge KC. Pleasures of the brain. Oxford: Oxford University Press; 2010. p. 343. [Google Scholar]

37. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13:1064–1071. [PubMed] [Google Scholar]

38. Leknes S, Tracey I. Pleasure and pain: masters of mankind. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford, U.K: Oxford University Press; 2010. pp. 320–336. [Google Scholar]

39. Mahler SV, Berridge KC. Which cue to want? Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci. 2009;29:6500–6513. [PMC free article] [PubMed] [Google Scholar]

40. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology. 2007;32:2267–2278. [PubMed] [Google Scholar]

41. Marshall JF, Richardson JS, Teitelbaum P. Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J Comp Physiol Psychol. 1974;87:808–830. [PubMed] [Google Scholar]

42. Marshall JF, Teitelbaum P. A comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats. Brain Res. 1973;55:229–233. [PubMed] [Google Scholar]

43. Olds J. Pleasure centers in the brain. Sci Am. 1956;195:105–116. [Google Scholar]

44. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–427. [PubMed] [Google Scholar]

45. Panksepp J. The anatomy of emotions. In: Plutchik R, Kellerman H, editors. Emotion: theory, research, and experience. New York: Academic press; 1986. pp. 91–124. [Google Scholar]

46. Panksepp J. Affective neuroscience: a conceptual framework for the study of emotions. In: Strongman K, editor. International reviews of studies in emotions. Chichester: Wiley; 1991. pp. 59–99. [Google Scholar]

47. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. Oxford U.K.: Oxford University Press; 1998. [Google Scholar]

48. Peciña S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–11786. [PMC free article] [PubMed] [Google Scholar]

49. Pellis SM, O’Brien DP, Pellis VC, Teitelbaum P, Wolgin DL, Kennedy S. Escalation of feline predation along a gradient from avoidance through play to killing. Behav Neurosci. 1988;102:760–777. [PubMed] [Google Scholar]

50. Pellis SM, Pellis VC, O’Brien DP, de la Cruz F, Teitelbaum P. Pharmacological subtraction of the sensory controls over grasping in rats. Physiol Behav. 1987;39:127–133. [PubMed] [Google Scholar]

51. Pfaffmann C. The pleasures of sensation. Psychol Rev. 1960;67:253–268. [PubMed] [Google Scholar]

52. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–291. [PubMed] [Google Scholar]

53. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008;363:3137–3146. [PMC free article] [PubMed] [Google Scholar]

54. Rodgers WL, Epstein AN, Teitelbaum P. Lateral hypothalamic aphagia: motor failure or motivational deficit? Am J Physiol. 1965;208:334–342. [PubMed] [Google Scholar]

55. Roth SR, Schwartz M, Teitelbaum P. Failure of recovered lateral hypothalamic rats to learn specific food aversions. J Comp Physiol Psychol. 1973;83:184–197. [PubMed] [Google Scholar]

56. Satinoff E, Valentino D, Teitelbaum P. A comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats. Brain Res. 1973;55:229–233. [PubMed] [Google Scholar]

57. Schallert T, Whishaw IQ. Two types of aphagia and two types of sensorimotor impairment after lateral hypothalamic lesions: observations in normal weight, dieted, and fattened rats. J Comp Physiol Psychol. 1978;92:720–741. [PubMed] [Google Scholar]

58. Schallert T, Whishaw IQ, De Ryck M, Teitelbaum P. The postures of catecholamine-depletion catalepsy: their possible adaptive value in thermoregulation. Physiol Behav. 1978;21:817–820. [PubMed] [Google Scholar]

59. Sherrington CS. The integrative action of the nervous system. New York: C Scribner’s sons; 1906. [Google Scholar]

60. Smith KS, Berridge KC. The ventral pallidum and hedonic reward: neurochemical maps of sucrose liking and food intake. J Neurosci. 2005;25:8637–8649. [PMC free article] [PubMed] [Google Scholar]

61. Smith KS, Berridge KC. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci. 2007;27:1594–1605. [PMC free article] [PubMed] [Google Scholar]

62. Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci USA. 2011;108:E255–E264. [PMC free article] [PubMed] [Google Scholar]

63. Smith KS, Mahler SV, Pecina S, Berridge KC. Kringelbach ML, Berridge KC. Pleasures of the brain. Oxford U.K.: Oxford University Press; 2010. Hedonic hotspots: generating sensory pleasure in the brain; pp. 27–49. [Google Scholar]

64. Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Ventral pallidum roles in reward and motivation. Behav Brain Res. 2009;196:155–167. [PMC free article] [PubMed] [Google Scholar]

65. Steiner JE. The gustofacial response: observation on normal and anencephalic newborn infants. Symp Oral Sens Percept. 1973;4:254–278. [PubMed] [Google Scholar]

66. Steiner JE, Glaser D, Hawilo ME, Berridge KC. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev. 2001;25:53–74. [PubMed] [Google Scholar]

67. Stellar E. Brain mechanisms in hedonic processes. In: Pfaff DW, editor. The physiological mechanisms of motivation. New York: Springer-Verlag; 1982. pp. 377–408. [Google Scholar]

68. Stellar JR, Brooks FH, Mills LE. Approach and withdrawal analysis of the effects of hypothalamic stimulation and lesions in rats. J Comp Physiol Psychol. 1979;93:446–466. [PubMed] [Google Scholar]

69. Stricker EM, Zigmond MJ. Brain catecholamines and the lateral hypothalamic syndrome. In: Novin D, Wyrwicka W, Bray G, editors. Hunger: basic mechanisms and clinical implications. New York: Raven Press; 1976. pp. 19–32. [Google Scholar]

70. Swanson LW. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol. 2005;493:122–131. [PubMed] [Google Scholar]

71. Szechtman H, Ornstein K, Teitelbaum P, Golani I. Functional recovery after lesions of the nervous system. V. Neural plasticity and behavioral recovery in the central nervous system. The use of recovery of function to analyze the organization of motivated behavior in the nervous system. Neurosci Res Program Bull. 1974;12:255–260. [PubMed] [Google Scholar]

72. Szechtman H, Ornstein K, Teitelbaum P, Golani I. The morphogenesis of stereotyped behavior induced by the dopamine receptor agonist apomorphine in the laboratory rat. Neuroscience. 1985;14:783–798. [PubMed] [Google Scholar]

73. Teitelbaum O, Benton T, Shah PK, Prince A, Kelly JL, Teitelbaum P. Eshkol-Wachman movement notation in diagnosis: the early detection of Asperger’s syndrome. Proc Natl Acad Sci. 2004;101:11909–11914. [PMC free article] [PubMed] [Google Scholar]

74. Teitelbaum P. The use of operant methods in the assessment and control of motivational states. In: Honig WK, editor. Operant Behavior: Areas of research and application. New York: Appleton-Century-Crofts; 1966. pp. 565–608. [Google Scholar]

75. Teitelbaum P. Levels of integration of the operant. In: Honig WK, Staddon JER, editors. Handbook of operant behavior. Englewood Cliffs, N.J: Prentice-Hall Inc; 1977. pp. 7–27. [Google Scholar]

76. Teitelbaum P. What is the ‘zero condition’ for motivated behavior? In: Hoebel BG, Novin D, editors. The neural basis of feeding and reward. Brunswick, ME: Haer Institute; 1982. pp. 8–23. [Google Scholar]

77. Teitelbaum P, Cheng MF, Rozin P. Development of feeding parallels its recovery after hypothalamic damage. J Comp Physiol Psychol. 1969;67:430–441. [PubMed] [Google Scholar]

78. Teitelbaum P, Cheng MF, Rozin P. Stages of recovery and development of lateral hypothalamic control of food and water intake. Ann N Y Acad Sci. 1969;157:849–860. [PubMed] [Google Scholar]

79. Teitelbaum P, Epstein AN. The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev. 1962;69:74–90. [PubMed] [Google Scholar]

80. Teitelbaum P, Pellis SM. Toward a synthetic physiological-psychology. Psychol Sci. 1992;3:4–20. [Google Scholar]

81. Teitelbaum P, Stellar E. Recovery from the failure to eat produced by hypothalamic lesions. Science. 1954;120:894–895. [PubMed] [Google Scholar]

82. Teitelbaum P, Stricker EM. Compound complementarities in the study of motivated behavior. Psychol Rev. 1994;101:312–317. [PubMed] [Google Scholar]

83. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG. Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci. 1998;95:13982–13987. [PMC free article] [PubMed] [Google Scholar]

84. Thompson RH, Swanson LW. Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc Natl Acad Sci USA. 2010;107:15235–15239. [PMC free article] [PubMed] [Google Scholar]

85. Tindell AJ, Smith KS, Pecina S, Berridge KC, Aldridge JW. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol. 2006;96:2399–2409. [PubMed] [Google Scholar]

86. Toates F. Motivational systems. Cambridge: Cambridge University Press; 1986. [Google Scholar]

87. Ungerstedt U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:95–122. [PubMed] [Google Scholar]

88. Valenstein ES, Cox VC, Kakolewski JW. Reexamination of the role of the hypothalamus in motivation. Psychol Rev. 1970;77:16–31. [PubMed] [Google Scholar]

89. Valenstein ES, Valenstein T. Interaction of positive and negative reinforcing neural systems. Science. 1964;145:1456–1458. [PubMed] [Google Scholar]

90. Veldhuizen MG, Rudenga KJ, Small D. The pleasure of taste flavor and food. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford, U.K: Oxford University Press; 2010. pp. 146–168. [Google Scholar]

91. Vuust P, Kringelbach ML. The pleasure of music. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain. Oxford, U.K: Oxford University Press; 2010. pp. 255–269. [Google Scholar]

92. Watts AG, Swanson LW. Anatomy of motivation. In: Gallistel CR, editor. Steven’s handbook of experimental psychology: learning, motivation, and emotion. New York: John Wiley & Sons, Inc; 2002. pp. 563–632. [Google Scholar]

93. Winn P. The lateral hypothalamus and motivated behavior: an old syndrome reassessed and a new perspective gained. Curr Dir Psychol. 1995;4:182–187. [Google Scholar]

94. Winn P, Tarbuck A, Dunnett SB. Ibotenic acid lesions of the lateral hypothalamus: comparison with the electrolytic lesion syndrome. Neuroscience. 1984;12:225–240. [PubMed] [Google Scholar]

95. Wise RA. The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends Neurosci. 1980;3:91–95. [Google Scholar]

96. Wise RA. The anhedonia hypothesis: Mark III. Behav Brain Sci. 1985;8:178–186. [Google Scholar]

97. Young PT. Hedonic organization and regulation of behavior. Psychol Rev. 1966;73:59–86. [PubMed] [Google Scholar]


Page 2

  • What behavioral changes happened over time to the rats who had their lateral hypothalamus destroyed?
  • What behavioral changes happened over time to the rats who had their lateral hypothalamus destroyed?
  • What behavioral changes happened over time to the rats who had their lateral hypothalamus destroyed?

Click on the image to see a larger version.