What era did the first reptiles appear

During the Mesozoic, or "Middle Life" era, life diversified rapidly and giant reptiles, dinosaurs and other monstrous beasts roamed the Earth. The period, which spans from about 252 million years ago to about 66 million years ago, was also known as the age of reptiles or the age of dinosaurs.

English geologist John Phillips, the first person to create the global geologic timescale, first coined the term Mesozoic in the 1800s. Phillips found ways to correlate sediments found around the world to specific time periods, said Paul Olsen, a geoscientist at the Lamont-Doherty Earth Observatory at Columbia University in New York. 

The Permian-Triassic boundary, at the start of the Mesozoic, is defined relative to a particular section of sediment in Meishan, China, where a type of extinct, eel-like creature known as a conodont first appeared, according to the International Commission on Stratigraphy. 

The end boundary for the Mesozoic era, the Cretaceous-Paleogene boundary, is defined by a 20-inch (50 centimeters) thick sliver of rock in El Kef, Tunisia, which contains well-preserved fossils and traces of iridium and other elements from the asteroid impact that wiped out the dinosaurs. The Mesozoic era is divided up into the Triassic, Jurassic, and Cretaceous periods.

Life and climate

The Mesozoic era began roughly around the time of the end-Permian extinction, which wiped out 96 percent of marine life and 70 percent of all terrestrial species on the planet. Life slowly rebounded, eventually giving way to a flourishing diversity of animals, from massive lizards to monstrous dinosaurs.

The Triassic period, from 252 million to 200 million years ago, saw the rise of reptiles and the first dinosaurs. The Jurassic period, from about 200 million to 145 million years ago, ushered in birds and mammals. And the Cretaceous period, from 145 million to 66 million years ago is known for its iconic dinosaurs, such as Triceratops, and pterosaurs such as Pteranodon.

Coniferous plants, or those that have cone-bearing seeds, already existed at the beginning of the era, but they became much more abundant during the Mesozoic. Flowering plants emerged during the late Cretaceous period. The lush plant life during the Mesozoic era provided plenty of food, allowing the biggest of the dinosaurs, such as the Argentinosaurus, to grow up to 80 tons, according to a 2005 study in the journal Revista del Museo Argentino de Ciencias Naturales.  

Earth during the Mesozoic era was much warmer than today, and the planet had no polar ice caps. During the Triassic period, Pangaea still formed one massive supercontinent. Without much coastline to moderate the continent's interior temperature, Pangaea experienced major temperature swings and was covered in large swaths of desert. Yet the region still had a belt of tropical rainforest in regions around the equator, said Brendan Murphy, an earth scientist at St. Francis Xavier University in Antigonish, Canada.

Extinctions

The Mesozoic era was bookended by two great extinctions, with another smaller extinction occurring at the end of the Triassic period, Olsen said.

Around 252 million years ago, the end-Permian extinction wiped out most life on Earth over about 60,000 years, according to a February 2014 study in the journal Proceedings of the National Academy of Sciences (PNAS). At the end of the Triassic period, roughly 201 million years ago, most amphibious creatures and crocodile-like creatures that lived in the tropics were wiped out. About 65 million years ago, a giant asteroid blasted into Earth and formed a giant crater at Chicxulub in the Yucatan Peninsula. 

Because the fossil record is incomplete, it's difficult to say exactly what caused the extinctions, or even how rapidly they occurred. After all, certain species or traces of catastrophic events could be missing in the fossil record simply because the sediments may have disappeared over tens of millions of years, Olsen said.

"Nature is very efficient at getting rid of its corpses," Olsen told Live Science.

However, there are a few prime suspects in each of the extinctions.

At the end of the Permian, the Siberian Traps underwent massive volcanic eruptions, which most geologists believe caused the world's biggest extinction. Exactly how, however, is up for debate.

The volcanic eruptions caused a spike in carbon dioxide in the atmosphere, though the 2014 PNAS study suggests that the spike was brief. The eruptions may have increased sea surface temperatures and led to ocean acidification that choked out sea life. And another study published in March 2014 in PNAS proposed that the eruptions released huge troves of the element nickel, which fueled a feeding frenzy by nickel-munching microbes known as Methanosarcina. Those microbes may have belched out huge amounts of methane, superheating the planet.

Most scientists agree that an asteroid impact wiped out the dinosaurs at the end of the Cretaceous period. The impact would have kicked up so much dust that it blocked the sun, halted photosynthesis, and led to such a huge disruption in the food chain that everything that wasn't a scavenger or very small died.

But the Deccan Traps, in what is now India, were spewing massive amounts of lava both before and after the asteroid impact, and a few scientists believe these flows either directly caused or accelerated the dinosaurs' demise.

Volcanism may also be to blame for the end-Triassic extinction. Though volcanism in general leads to global warming, after an initial volcanic eruption, huge amounts of sulfur spew into the air and cause a brief period of global cooling. Such cooling-heating cycles may have occurred hundreds of times over 500,000 years. Similar cold snaps have been tied to huge crop failures in historical times, such as in Iceland in the 1700s, Olsen said.  

As a result, animals used to constant, balmy temperatures in the tropics were wiped out, while animals that were insulated with proto-feathers, such as pterosaurs, or that lived at higher latitudes and were already adapted to big temperature variations, did just fine, Olsen said.

"When you have these volcanic winters, where temperatures may have dropped even below freezing in the tropics, it was devastating," Olsen said.

Originally published on Live Science.

Additional resources

  • Andrews CW. A descriptive catalogue of the marine reptiles of the Oxford Clay. Based on the Leeds collection in the British Museum (Natural History), London. Part. 1910;1:1–205.

  • Bardet N. Stratigraphic evidence for the extinction of the ichthyosaurs. Terra Nova. 1992;4:649–56. doi:10.1111/j.1365-3121.1992.tb00614.x.

    Article  Google Scholar 

  • Bardet N, Fernández MS. A new ichthyosaur from the Upper Jurassic lithographic limestone of Bavaria. J Paleontol. 2000;74:503–11. doi:10.1666/0022-3360(2000)074<0503:ANIFTU>2.0.CO;2.

    Article  Google Scholar 

  • Bell GL Jr, Polcyn MJ. Dallasaurus turneri, a new primitive mosasauroids from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Neth J Geosci. 2005;84:177–94.

    Google Scholar 

  • Benton MJ. Vertebrate paleontology. 3rd ed. New York: Wiley; 2004. p. 472.

    Google Scholar 

  • Berta A, Ray CE, Wyss AR. Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science. 1989;244:60–2. doi:10.1126/science.244.4900.60.

    Article  CAS  Google Scholar 

  • Borden R. Varanus salvator (Asian Water Monitor) migration. Biawak 2007;1:84. Brischoux F, Bonnet X. Cook TR, Shine R. Snakes at sea: diving performances of free-ranging sea kraits. Proceedings of the 11th Annual Meeting on Health, Science and Technology. Université de Tours. 2007.

  • Brinkmann W. Die Ichthyosaurier (Reptilia) aus der Grenzbitumenzone (Mitteltrias) des Monte San Giorgio (Tessin, Schwiz) – neue Ergebnisse. Vierteljahrsschrift Naturforschenden Ges Zurich. 1998;143:165–77.

    Google Scholar 

  • Brischoux F, Bonnet X, Cook TR, Shine R. Allometry of diving capacities: ectothermy vs. endothermy. J Evol Biol. 2008;21:324–32.

    CAS  Google Scholar 

  • Caldwell MW. On the aquatic squamate Dolichosaurus longicollis Owen 1850 (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. J Vertebr Paleontol. 2000;20:720–35. doi:10.1671/0272-4634(2000)020[0720:OTASDL]2.0.CO;2.

    Article  Google Scholar 

  • Caldwell MW, Palci A. A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. J Vertebr Paleontol. 2007;27:863–80. doi:10.1671/0272-4634(2007)27[863:ANBMFT]2.0.CO;2.

    Article  Google Scholar 

  • Camp CL. California mosasaurs. Memoirs of the University of California. 1942;13:1–68.

    Google Scholar 

  • Carroll RL. The emergence of marine reptiles in the Late Paleozoic and Early Mesozoic. In: Reif W-E, Westphal F, editors. Third symposium on mesozoic terrestrial ecosystems, short papers. Tübingen: Attempto; 1982. p. 41–46.

    Google Scholar 

  • Carroll RL. A pleurosaurs from the Lower Jurassic and the taxonomic position of the Sphenodontida. Palaeontogr Abt A. 1985;189:1–28.

    Google Scholar 

  • Carroll RL. Vertebrate paleontology and evolution. New York: W. H. Freeman; 1988. p. 698.

    Google Scholar 

  • Cheng YN, Wu XC, Ji Q. Chinese marine reptiles gave live birth to young. Nature. 2004;423:383–6. doi:10.1038/nature03050.

    Article  Google Scholar 

  • Dalla Vecchia FM. A new sauropterygian reptile with plesiosaurian affinity from the Late Triassic of Italy. Riv Ital Paleontol Stratigr. 2006;112:207–25.

    Google Scholar 

  • Dal Sasso C, Pinna G. Besanosaurus leptorhynchus n. gen. n. sp., a new shastasaurid ichthyosaur from the Middle Triassic of Besano (Lombardy, N. Italy). Paleontol Lomb. 1996;4:3–23.

    Google Scholar 

  • Druckenmiller PS, Russell AP. A phylogeny of Plesiosauria (Sauropterygia) and its bearing on the systematic status of Leptocleidus Andrews, 1922. Zootaxa. 2008;1863:3–120.

    Google Scholar 

  • Dutchak AR. A review of the taxonomy and systematics of aigialosaurs. Neth J Geosci. 2005;84:221–9.

    Google Scholar 

  • Fernández MS. Dorsal or ventral? Homologies of the forefin of Caypullisaurus (Ichthyosauria: Ophthalmosauria). J Vertebr Paleontol. 2001;22:515–20. doi:10.1671/0272-4634(2001)021[0515:DOVHOT]2.0.CO;2.

    Article  Google Scholar 

  • Fraas E. Ueber einen neuen Fund von Ichthyosaurus in Württemberg. Neues Jahrb Mineral Geol Palaontol. 1892;2:87–90.

    Google Scholar 

  • Giles J. Mystery and myth behind the plesiosaur. Nature. 2006;441:390. doi:10.1038/441390a.

    Article  Google Scholar 

  • Graham JB. Body temperatures of the sea snake Pelamis platurus. Copeia. 1974;1974:531–533.

    Article  Google Scholar 

  • Graham JB, Rubinoff I, Hecht MK. Temperature physiology of the sea snake Pelamis platurus: an index of its colonization potential in the Atlantic Ocean. Proc Natl Acad Sci U S A. 1971;68:1360–3. doi:10.1073/pnas.68.6.1360.

    Article  CAS  Google Scholar 

  • Hesselbo SP, Robinson S, Surlyk F. Sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain. J Geol Soc Lond. 2004;161:365–79.

    Article  Google Scholar 

  • Hirayama R. Oldest known sea turtle. Nature. 1998;392:705–8. doi:10.1038/33669.

    Article  CAS  Google Scholar 

  • Hua S, de Buffrenil V. Bone histology as a clue in the interpretation of functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). J Vertebr Paleontol. 1996;16:703–17.

    Article  Google Scholar 

  • Jacobs LL, Ferguson K, Polcyn MJ, Rennison C. Cretaceous d13C stratigraphy and the age of dolichosaurs and early mosasaurs. Neth J Geosci. 2005;84:257–68.

    Google Scholar 

  • Jefferson TA, Leatherwood S, Webber MA. FAO species identification guide. Marine mammals of the world. Rome: FAO; 1993. p. 320.

    Google Scholar 

  • Jiang DY, Rieppel O, Motani R, Hao WC, Sun YL, Sun ZY. A new Middle Triassic eosauropterygians (Reptilia, Sauropterygia) from southwestern China. J Vertebr Paleontol. 2008;28:1055–62. doi:10.1671/0272-4634-28.4.1055.

    Article  Google Scholar 

  • Kear BP. First gut content in a Cretaceous sea turtle. Biol Lett. 2006;2:113–5. doi:10.1098/rsbl.2005.0374.

    Article  Google Scholar 

  • Kear BP, Boles WE, Smith ET. Unusual gut contents in a Cretaceous ichthyosaur. Proc R Soc Lond B Biol Sci. 2003;270:S206–8. doi:10.1098/rsbl.2003.0050.

    Article  Google Scholar 

  • Kear BP, Lee MSY. A primitive protostegid from Australia and early sea turtle evolution. Biol Lett. 2006;2:116–9. doi:10.1098/rsbl.2005.0406.

    Article  Google Scholar 

  • Kozur HW, Bachmann GH. Correlation of the German Triassic with the international scale. Albertiana. 2005;32:21–35.

    Google Scholar 

  • Kuhn-Schnyder E. Die Triasfauna der Tessiner Kalkalpen. XVIII. Askeptosaurus italicus Nopsca. Schweiz Palaontol Abh. 1952;69:1–73.

    Google Scholar 

  • Li JL. The horizon and age of the marine reptiles from Hubei Province, China. Vertebrata Palasiatica. 2002;40:241–4.

    Google Scholar 

  • Li C, Rieppel O. A new cyamodontoid placodont from Triassic of Guizhou. Chin Sci Bull. 2002;47:403–7. doi:10.1360/02tb9094.

    Article  Google Scholar 

  • Lindgren J, Jagt JWM, Caldwell MW. A fishy mosasaur: the axial skeleton of Plotosaurus (Reptilia, Squamata) reassessed. Lethaia. 2007;40:153–60.

    Article  Google Scholar 

  • Martill DM. An ichthyosaur with preserved soft tissue from the Sinemurian of southern England. Palaeontology. 1995;38:897–903.

    Google Scholar 

  • Martin JE, Fox JE. Stomach contents of Globidens, a shell-crushing mosasaur (Squamata), from the Late Cretaceous Pierre Shale Group, Big Bend area of the Missouri River, central South Dakota. Spec Pap Geol Soc Am. 2007;427:167–176.

    Google Scholar 

  • Massare JA. Tooth morphology and prey preference of Mesozoic marine reptiles. J Vertebr Paleontol. 1987;7:121–37.

    Article  Google Scholar 

  • Massare JA. Swimming capabilities of Mesozoic marine reptiles; implications for method of predation. Paleobiology. 1988;14:187–205.

    Google Scholar 

  • McGowan C. A remarkable small ichthyosaur from the Upper Triassic of British Columbia, representing a new genus and species. Can J Earth Sci. 1995;32:292–303.

    Article  Google Scholar 

  • McGowan C. A new and typically Jurassic ichthyosaur from the Upper Triassic of British Columbia. Can J Earth Sci. 1996;33:24–32.

    Article  Google Scholar 

  • McGowan C, Motani R. Ichthyopterygia. Handbuch der Paläoherpetologie 8. München: Verlag Dr. Friedrich Pfeil; 2002. p. 175.

    Google Scholar 

  • Márquez MR. FAO species catalogue. Vol.11: Sea turtles of the world. An annotated and illustrated catalogue of sea turtle species known to date. FAO Fisheries Synopsis No. 125, Vol. 11. Rome: FAO; 1990. p. 81.

    Google Scholar 

  • Motani R. Scaling effects in caudal fin kinematics: implication for ichthyosaurian speed. Nature. 2002a;415:309–12. doi:10.1038/415309a.

    Article  Google Scholar 

  • Motani R. Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology. 2002b;28:251–62. doi:10.1666/0094-8373(2002)028<0251:SSEOEM>2.0.CO;2.

    Article  Google Scholar 

  • Motani R. Combining uniformitarian and historical data to interpret how Earth environment influenced the evolution of Ichthyopterygia. Paleontol Soc Pap. 2008;14:147–64.

    Google Scholar 

  • Motani R, You H, McGowan C. Eel-like swimming in the earliest ichthyosaurs. Nature. 1996;382:347–8. doi:10.1038/382347a0.

    Article  Google Scholar 

  • Motani R, Rothschild BM, Wahl W Jr. Large eyes in deep diving ichthyosaurs. Nature. 1999;402:747. doi:10.1038/45435.

    Article  CAS  Google Scholar 

  • Müller J. The anatomy of Askeptosaurus italicus from the Middle Triassic of Monte San Giorgio and the interrelationships of thalattosaurs (Reptilia, Diapsida). Can J Earth Sci. 2005;42:1347–67. doi:10.1139/e05-030.

    Article  Google Scholar 

  • Müller J. The first record of a thalattosaur from the Upper Triassic of Austria. J Vertebr Paleontol. 2007;27:236–40. doi:10.1671/0272-4634(2007)27[236:FROATF]2.0.CO;2.

    Article  Google Scholar 

  • Müller J, Renesto S, Evans S. The marine diapsid reptile Endennasaurus from the Upper Triassic of Italy. Palaeontology. 2005;48:15–30. doi:10.1111/j.1475-4983.2004.00434.x.

    Article  Google Scholar 

  • Nicholls EL, Brinkman D. New thalattosaurs from the Triassic Sulphur Mountain Formation of Wapiti Lake, British Columbia. J Paleontol. 1993;67:263–78.

    Google Scholar 

  • Nicholls EL, Manabe M. Giant ichthyosaurs of the Triassic—a new species of Shonisaurus from the Pardonet Formation (Norian: Late Triassic) of British Columbia. J Vertebr Paleontol. 2004;24:838–49. doi:10.1671/0272-4634(2004)024[0838:GIOTTN]2.0.CO;2.

    Article  Google Scholar 

  • O’Keefe FR. Ecomorphology of plesiosaur flipper geometry. J Evol Biol. 2001;14:987–91. doi:10.1046/j.1420-9101.2001.00347.x.

    Article  Google Scholar 

  • O’Keefe FR. The evolution of pleisoaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology. 2002;28:101–12. doi:10.1666/0094-8373(2002)028<0101:TEOPAP>2.0.CO;2.

    Article  Google Scholar 

  • O’Keefe FR, Carrano MT. Correlated trends in the evolution of the plesiosaur locomotor system. Paleobiology. 2005;31:656–75.

    Article  Google Scholar 

  • Polcyn MJ, Bell GL Jr. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. Neth J Geosci. 2005;84:321–33.

    Google Scholar 

  • Rasmussen AR. Sea snakes. In: Carpenter KE, Niem VH, editors. FAO species identification guide for fishery purposes. The Living Marine Resources of the Western Central Pacific. Volume 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. Rome: FAO; 2001. p. 3987–4008.

    Google Scholar 

  • Rieppel O. Sauropterygia I. Handbuch der Paläoherpetologie 12A. München: Verlag Dr. Friedrich Pfeil; 2000. p. 134.

    Google Scholar 

  • Rieppel O, Liu J, Bucher H. The first record of a thalattosaur reptile from the Late Triassic of southern China (Guizhou Province, PR China). J Vertebr Paleontol. 2000;20:507–14. doi:10.1671/0272-4634(2000)020[0507:TFROAT]2.0.CO;2.

    Article  Google Scholar 

  • Rosenzweig PA. Estuarine crocodiles. In: Carpenter KE, Niem VH, editors. FAO species identification guide for fishery purposes. The Living Marine Resources of the Western Central Pacific. Volume 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. Rome: FAO; 2001. p. 3971–3972.

    Google Scholar 

  • Scheyer TM. Skeletal histology of the dermal armor of Placodontia: the occurrence of ‘postcranial fibro-cartilaginous bone’ and its developmental implications. J Anat. 2007;211:737–53. doi:10.1111/j.1469-7580.2007.00815.x.

    Article  Google Scholar 

  • Seymour RS. Physiological adaptation to aquatic life. In: Gans C, editor. Biology of the Reptilia Vol. 13. Physiology C. London: Academic; 1982. p. 1–51.

    Google Scholar 

  • Storrs GW. Anatomy and relationships of Corosaurus alcovensis (Diapsida: Sauropterygia) and the Triassic Alcova Limestone of Wyoming. Peabody Mus Nat Hist Bull. 1991;44:1–151.

    Google Scholar 

  • Tarlo LB. A review of the Upper Jurassic pliosaurs. Bull Br Mus Nat Hist Geol. 1960;4:145–489.

    Google Scholar 

  • Walls GL. The vertebrate eye and its adaptive radiation. Bloomfield Hills: Cranbrook; 1942.

    Book  Google Scholar 

  • Whittow GC. Thermoregulatory adaptations in marine mammals: interacting effects of exercise and body mass. A review. Mar Mamm Sci. 1987;3:220–41. doi:10.1111/j.1748-7692.1987.tb00165.x.

    Article  Google Scholar 

  • Wieland GR. Archelon ischyros: a new gigantic cryptodire testudinate from the Pierre Cretaceous of South Dakota. Am J Sci. 1896;2:399–413.

    Article  Google Scholar 

  • Wieland GR. Revision of the Protostegidae. Am J Sci. 1909;27:101–31.

    Article  Google Scholar 

  • Wilfred NT. The occurrence of amphibians and reptiles in saltwater areas, as a bibliography. Bull Mar Sci Gulf Caribb. 1958;8:1–97.

    Google Scholar 

  • Woodward AS. On two specimens of Ichthyosaurus showing contained embryos. Geol Mag. 1906;5:443–4.

    Article  Google Scholar 


Page 2

Time Group (Subgroup) Generic diversity
Extant Sea snake   16
Sea turtle 6
Sea krait 1
Marine iguana 1
Mesozoic Sauropterygia Placodontia ca. 10
Plesiosauria ca. 70
Others ca. 20
Ichthyopterygia ca. 40
Mosasauroidea Mosasauridae ca. 30
  Others ca. 10
Marine snakes*   ca. 5
Chelonioidea   ca. 30
Thalattosauria   ca. 10
Thalattosuchia   ca. 10
Marine Pleurodira   ca. 10
Marine Cryptodira   ca. 10
Pleurosauridae   2
Hupehsuchia   2
Qianosuchus   1
Sikannisuchus   1

  1. *different from living sea snakes