What is a major element found in our bones

1. Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol. 2015;32:86–106. 10.1016/j.jtemb.2015.06.005 [PubMed] [CrossRef] [Google Scholar]

2. Helliwell TR, Kelly SA, Walsh HPJ, Klenerman L, Haines J, Clark R, et al. Elemental analysis of femoral bone from patients with fractured neck of femur or osteoarthrosis. Bone,. 1996;18:151–7. [PubMed] [Google Scholar]

3. Nganvongpanit K, Brown JL, Buddhachat K, Somgird C, Thitaram C. Elemental analysis of Asian Elephant (Elephas maximus) teeth using X-ray fluorescence and a comparison to other species. Biol Trace Elem Res. 2015;July 22:[Epub ahead of print]. [PubMed] [Google Scholar]

4. Balter V. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. Oecologia. 2004;139:83–8. [PubMed] [Google Scholar]

5. Sharma RP, Shupe JL. Lead, cadmium, and arsenic residues in animal tissues in relation to those in their surrounding habitat. Sci Total Environ. 1977;7:53–62. [PubMed] [Google Scholar]

6. Kubota R, Kunito T, Tanabe S. Chemical speciation of arsenic in the livers of higher trophic marine animals. Mar Pollut Bull. 2002;45:218–23. [PubMed] [Google Scholar]

7. Hildebrand SG, Strand RH, Huckabee JW. Mercury accumulation in fish and invertebrates of the North Fork Holston River, Virginia and Tennessee. J Environ Qual. 1980;9:393–400. [Google Scholar]

8. Al-Weher SM. Levels of heavy metal Cd, Cu and Zn in three fish species collected from the northern Jordan valley, Jordan. Jordan J Biol Sci. 2008;1:41–6. [Google Scholar]

9. Kautenburger R, Wannemacher J, Müller P. Multi element analysis by X-ray fluorescence: A powerful tool of ivory identification from various origins. J Radioanal Nucl Ch. 2004;260:399–404. [Google Scholar]

10. Buddhachat K, Thitaram C, Brown JL, Klinhom S, Bansiddhi P, Penchart K, et al. Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks. Sci Rep. 2016:Article in press. [PMC free article] [PubMed] [Google Scholar]

11. Gonzalez-Rodriguez J, Fowler G. A study on the discrimination of human skeletons using X-ray fluorescence and chemometric tools in chemical anthropology. Forensic Sci Int. 2013;231:407.e1–6. [PubMed] [Google Scholar]

12. Christensen AM, Smith MA, Thomas RM. Validation of X-ray fluorescence spectrometry for determining osseous or dental origin of unknown material. J Forensic Sci. 2012;57:47–51. 10.1111/j.1556-4029.2011.01941.x [PubMed] [CrossRef] [Google Scholar]

13. Nganvongpanit K, Buddhachat K, Brown JL. Comparison of bone tissue elements between normal and osteoarthritic pelvic bones in dogs. Biol Trace Elem Res. 2015;November 4:Article in press. [PubMed] [Google Scholar]

14. Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P. Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res. 2016;28 January. [PubMed] [Google Scholar]

15. Carvalho ML, Casaca C, Marques JP, Pinheiro T, Cunha AS. Human teeth elemental profiles measured by synchrotron x-ray fluorescence: dietary habits and enviromental influence. X-Ray Spectrom. 2001;30:190–3. [Google Scholar]

16. Kierdorf U, Stoffels D, Kierdorf H. Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags-a quantitative X-ray fluorescence study. Biol Trace Elem Res. 2014;162:124–33. 10.1007/s12011-014-0154-x [PubMed] [CrossRef] [Google Scholar]

17. Zimmerman HA, Meizel-Lambert CJ, Schultz JJ, Sigman ME. Chemical differentiation of osseous, dental, and non-skeletal materials in forensic anthropology using elemental analysis. Sci Justice. 2015;55:131–8. [PubMed] [Google Scholar]

18. Nie LH, Sanchez S, Newton K, Grodzins L, Cleveland RO, Weisskopf MG. In vivo quantification of lead in bone with a portable x-ray fluorescence system—methodology and feasibility. Phys Med Biol. 2011;56:N39–51. 10.1088/0031-9155/56/3/N01 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Fleming DE, Gherase MR. A rapid, high sensitivity technique for measuring arsenic in skin phantoms using a portable x-ray tube and detector. Phys Med Biol. 2007;52:N459 [PubMed] [Google Scholar]

20. Nganvongpanit K, Buddhachat K, Klinhom S, Kaewmong P, Thitaram C, Mahakkanukrauh P. Comparative elemental profile using handheld X-ray fluorescence in human, elephant, dog and dolphin; preliminary study for species identification. Forensic Sci Int. 2016:Available online 6 April 2016. [PubMed] [Google Scholar]

21. Davis EB, Brakora KA, Lee AH. Evolution of ruminant headgear: a review. Proc Biol Sci. 2013;278:2857–65. [PMC free article] [PubMed] [Google Scholar]

22. Tomlinson DJ, Mulling CH, Fakler TM. Invited Review: Formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity. J Dairy Sci. 2004;87:797–809. [PubMed] [Google Scholar]

23. Mülling CK. Three-dimensional appearance of bovine epidermal keratinocytes in different stages of differentiation revealed by cell maceration and scanning electron microscopic investigation. Folia Morphol (Warsz). 2000;59:239–46. [PubMed] [Google Scholar]

24. Zhang QB, Li C, Pan YT, Shan GH, Cao P, He J, et al. Microstructure and mechanical properties of horns derived from three domestic bovines. Mater Sci Eng C Mater Biol Appl. 2013;33:5036–43. 10.1016/j.msec.2013.08.034 [PubMed] [CrossRef] [Google Scholar]

25. Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2007. [Google Scholar]

26. Chen PY, Stokes AG, McKittrick J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 2009;5:693–706. 10.1016/j.actbio.2008.09.011 [PubMed] [CrossRef] [Google Scholar]

27. de Bruijn JD, van Blitterswijk CA, Davies JE. Initial bone matrix formation at the hydroxyapatite interface in vivo. J Biomed Mater Res. 1995;29:89–99. [PubMed] [Google Scholar]

28. de Dios Teruel J, Alcolea A, Hernández A, Ruiz AJO. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60:768–75. 10.1016/j.archoralbio.2015.01.014 [PubMed] [CrossRef] [Google Scholar]

29. He B, Huang S, Zhang C, Jing J, Hao Y, Xiao L, et al. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age. Arch Oral Biol. 2011;56:997–1004. 10.1016/j.archoralbio.2011.02.015 [PubMed] [CrossRef] [Google Scholar]

30. Fischer A, Wiechuła D, Przybyła-Misztela C. Changes of concentrations of elements in deciduous teeth with age. Biol Trace Elem Res. 2013;154:427–32. 10.1007/s12011-013-9744-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Singh RR, Goyal SP, Khanna PP, Mukherjee PK, Sukumar R. Using morphometric and analytical techniques to characterize elephant ivory. Forensic Sci Int. 2006;162:144–51. [PubMed] [Google Scholar]

32. Hare D, Austin C, Doble P, Arora M. Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 2011;39:397–403. 10.1016/j.jdent.2011.03.004 [PubMed] [CrossRef] [Google Scholar]

33. Curzon MEJ, Featherstone JDB. Chemical composition of enamel CRC handbook of experimental aspects of oral biochemistry. Lazari E. P. Levy B. M.: CRC Press; 1983. p. 123–35 [Google Scholar]

34. Ma QY, Traina SJ, Logan TJ, Ryan JA. Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ Sci Technol. 1994;28:1219–28. 10.1021/es00056a007 [PubMed] [CrossRef] [Google Scholar]

35. Ma QY, Logan TJ, Traina SJ, Ryan JA. Effects of NO3-, Cl-, F-, SO42-, and CO32-on Pb2+ immobilization by hydroxyapatite. Environ Sci Technol. 1994;28:408–18. 10.1021/es00052a011 [PubMed] [CrossRef] [Google Scholar]

36. Ellis DE, Terra J, Warschkow O, Jiang M, González GB, Okasinski JS, et al. A theoretical and experimental study of lead substitution in calcium hydroxyapatite. Phys Chem Chem Phys. 2006;8:967–76. [PubMed] [Google Scholar]

37. Lazarević S, Janković-Častvan I, Tanasković D, Pavićević V, Janaćković D, Petrović R. Sorption of Pb 2+, Cd 2+, and Sr 2+ ions on calcium hydroxyapatite powder obtained by the hydrothermal method. J Environ Eng. 2008;134:683–8. [Google Scholar]

38. Komarnicki GJ. Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemosphere. 2000;41:1593–602. [PubMed] [Google Scholar]

39. Frandson RD, Wilke WL, Fails AD. Anatomy and physiology of farm animals. 7 ed Iowa: Wiley-Blackwell; 2009. [Google Scholar]

40. Ho TY, Chien CT, Wang BN, Siriraks A. Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS. Talanta. 2010;82:1478–84. 10.1016/j.talanta.2010.07.022 [PubMed] [CrossRef] [Google Scholar]

41. Turekian KK. Oceans. 2 ed New Jersey: Prentice Hall; 1976. [Google Scholar]

42. Brown CJ, Chenery SR, Smith B, Mason C, Tomkins A, Roberts GJ, et al. Environmental influences on the trace element content of teeth—implications for disease and nutritional status. Arch Oral Biol. 2004;49:705–17. [PubMed] [Google Scholar]

43. Smith B, Chenery SRN, Cook JM, Styles MT, Tiberindwa JV, Hampton C, et al. Geochemical and environmental factors controlling exposure to cerium and magnesium in Ugand. J Geochem Explor. 1998;65:1–15. [Google Scholar]

44. Beard BL, Johnson CM. Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci. 2000;45:1049–61. [PubMed] [Google Scholar]

45. Amr MA. Trace elements in Egyptian teeth. IJPS. 2011;6:6241–5. [Google Scholar]

46. Mohapatra KK, Patra AK, Paramanik DS. Food and feeding behaviour of Asiatic elephant (Elephas maximus Linn.) in Kuldiha Wild Life Sanctuary, Odisha, India. J Environ Biol. 2013;34:87–92. [PubMed] [Google Scholar]

47. Janis C. An evolutionary history of browsing and grazing ungulates In: Gordon IJ, Prins HTT, editors. The ecology of browsing and grazing. Berlin: Springer-Verlag Berlin Heidelberg; 2008. p. 21–45. [Google Scholar]

48. Todd NE. Qualitative comparison of the cranio-dental osteology of the extant elephants, Elephas Maximus (Asian elephant) and Loxodonta africana (African elephant). Anat Rec (Hoboken). 2010;293:62–73. [PubMed] [Google Scholar]

49. Mulhern DM, Ubelaker DH. Differences in osteon banding between human and nonhuman bone. J Forensic Sci. 2001;46:220–2. [PubMed] [Google Scholar]

50. Dominguez VM, Crowder CM. The utility of osteon shape and circularity for differentiating human and non‐human Haversian bone. Am J Phys Anthropol. 2012;149:84–91. 10.1002/ajpa.22097 [PubMed] [CrossRef] [Google Scholar]

51. Lockwood CA, Lynch JM, Kimbel WH. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics. Journal of Anatomy. 2002;201:447–64. [PMC free article] [PubMed] [Google Scholar]

52. Mantouvalou I, Malzer W, Kanngießer B. Quantification for 3D micro X-ray fluorescence. Spectrochimica Acta Part B. Atomic Spectroscopy. 2012;77:9–18. [Google Scholar]

53. Hua Y, Yap CT. Simultaneous matrix and background correction method and its application in XRF concentration determination of trace elements in geological materials. X-Ray Spectrom. 1994;23:27–31. [Google Scholar]

54. Sitko R, Zawisza B. Quantification in X-Ray fluorescence spectrometry In: Sharma SK, editor. X-Ray Spectroscopy. Croatia: INTECH Open Access Publisher; 2012. p. 138–62. [Google Scholar]

55. Kalcsits LA. Non-destructive measurement of calcium and potassium in apple and pear using handheld x-ray fluorescence. Front Plant Sci. 2016;7:442 10.3389/fpls.2016.00442 [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Mean (± standard deviation (SD)) elemental percentages in horn of 10 Bovidae and antler of two Cervidae speces.

Data were combined across species within family category.

SpecimenAlSiPSClKCaTiVCrMnFeZnZrAgCdSnSbLE
Horn (Bovidae)0.711±0.7081.901±1.6910.132±0.1141.924±0.7262.725±1.8330.433±0.2690.505±0.2590.015±0.006000.008±0.0080.050±0.0550.020±0.0100000092.050±2.175
Antler (Cervidae)0.980±0.4573.441±3.1015.941±1.6340.300±0.14400.787±0.59017.4382.5850.067±0.0310.018±0.0060.009±0.0010.031±0.0110.124±0.0990.023±0.0210.001±0.0000.013±0.0020.018±0.0030.020±0.0030.028±0.00470.917±3.489
P-value0.0660.0690.0000.000NA0.0390.0000.000NANA0.0000.0170.285NANANANANA0.000