What is the name of the second layer that forms a semi permeable barrier around the outside of each cell?

The plasma membrane of a cell is a network of lipids and proteins that forms the boundary between a cell’s contents and the outside of the cell. It is also simply called the cell membrane. The main function of the plasma membrane is to protect the cell from its surrounding environment. It is semi-permeable and regulates the materials that enter and exit the cell. The cells of all living things have plasma membranes.

The plasma membrane surrounds all cells and physically separates the cytoplasm, which is the material that makes up the cell, from the extracellular fluid outside the cell. This protects all the components of the cell from the outside environment and allows separate activities to occur inside and outside the cell.

The plasma membrane provides structural support to the cell. It tethers the cytoskeleton, which is a network of protein filaments inside the cell that hold all the parts of the cell in place. This gives the cell its shape. Certain organisms such as plants and fungi have a cell wall in addition to the membrane. The cell wall is composed of molecules such as cellulose. It provides additional support to the cell, and it is why plant cells do not burst like animal cells do if too much water diffuses into them.

Plasma membranes are selectively permeable (or semi-permeable), meaning that only certain molecules can pass through them. Water, oxygen, and carbon dioxide can easily travel through the membrane. Generally, ions (e.g. sodium, potassium) and polar molecules cannot pass through the membrane; they must go through specific channels or pores in the membrane instead of freely diffusing through. This way, the membrane can control the rate at which certain molecules can enter and exit the cell.

Endocytosis is when a cell ingests relatively larger contents than the single ions or molecules that pass through channels. Through endocytosis, a cell can take in large quantities of molecules or even whole bacteria from the extracellular fluid. Exocytosis is when the cell releases these materials. The cell membrane plays an important role in both of these processes. The shape of the membrane itself changes to allow molecules to enter or exit the cell. It also forms vacuoles, small bubbles of membrane that can transport many molecules at once, in order to transport materials to different places in the cell.

Another important function of the membrane is to facilitate communication and signaling between cells. It does so through the use of various proteins and carbohydrates in the membrane. Proteins on the cell “mark” that cell so that other cells can identify it. The membrane also has receptors that allow it to carry out certain tasks when molecules such as hormones bind to those receptors.

What is the name of the second layer that forms a semi permeable barrier around the outside of each cell?
Cell membrane detailed diagram

The membrane is partially made up of molecules called phospholipids, which spontaneously arrange themselves into a double layer with hydrophilic (“water loving”) heads on the outside and hydrophobic (“water hating”) tails on the inside. These interactions with water are what allow plasma membranes to form.

Proteins are wedged between the lipids that make up the membrane, and these transmembrane proteins allow molecules that couldn’t enter the cell otherwise to pass through by forming channels, pores or gates. In this way, the cell controls the flow of these molecules as they enter and exit. Proteins in the cell membrane play a role in many other functions, such as cell signaling, cell recognition, and enzyme activity.

Carbohydrates are also found in the plasma membrane; specifically, most carbohydrates in the membrane are part of glycoproteins, which are formed when a carbohydrate attaches to a protein. Glycoproteins play a role in the interactions between cells, including cell adhesion, the process by which cells attach to each other.

Technically, the cell membrane is a liquid. At room temperature, it has about the same consistency as vegetable oil. Lipids, proteins, and carbohydrates in the plasma membrane can diffuse freely throughout the cell membrane; they are essentially floating across its surface. This is known as the fluid mosaic model, which was coined by S.J. Singer and G.L. Nicolson in 1972.

  • Cell wall – A structure that surrounds the plasma membrane of plant and fungus cells and provides additional support to those cells.
  • Phospholipid – a molecule that forms the characteristic double layer of the plasma membrane.
  • Semi-permeable – allowing only certain molecules to pass through due to the chemical properties of the membrane.
  • Fluid Mosaic Model – a model that describes the composition of the plasma membrane and how phospholipids, proteins, and carbohydrates freely move within it.

1. What type of molecule forms the double layer of the plasma membrane?
A. Phospholipids
B. Ion Channels
C. Ribosomes
D. Deoxyribonucleic acid

A is correct. Phospholipids form the double layer of the plasma membrane by spontaneously arranging themselves in this way when they are in an aqueous (water) solution. Ion channels are also found in the membrane, but they are not responsible for forming the double layer. Ribosomes and deoxyribonucleic acid are found inside the cell; ribosomes make proteins, and deoxyribonucleic acid is DNA, the genetic material.

2. Which sentence best describes the Fluid Mosaic Model?
A. The plasma membrane allows fluid to pass between the extracellular fluid and the cytoplasm.
B. Too much fluid will cause animal cells to burst.
C. The components of the membrane fit in place like the tiles in a mosaic.
D. The lipids, proteins, and carbohydrates of the plasma membrane travel freely across its surface.

D is correct. The Fluid Mosaic Model describes the liquid-like movement of the lipids, proteins, and carbohydrates that make up the plasma membrane. These components travel freely across its surface.

3. Which is NOT a function of the plasma membrane?
A. To generate the energy to power cell activities
B. To protect the cell from the surrounding environment
C. To facilitate cell-cell communication
D. To control the rate of certain molecules entering and leaving the cell

A is correct. Choices B, C, and D are all functions of the plasma membrane. The mitochondrion is the part of the cell that generates energy.

A phospholipid is a type of lipid molecule that is the main component of the cell membrane. Lipids are molecules that include fats, waxes, and some vitamins, among others. Each phospholipid is made up of two fatty acids, a phosphate group, and a glycerol molecule. When many phospholipids line up, they form a double layer that is characteristic of all cell membranes.

A phospholipid is made up of two fatty acid tails and a phosphate group head. Fatty acids are long chains that are mostly made up of hydrogen and carbon, while phosphate groups consist of a phosphorus molecule with four oxygen molecules attached. These two components of the phospholipid are connected via a third molecule, glycerol.

Phospholipids are able to form cell membranes because the phosphate group head is hydrophilic (water-loving) while the fatty acid tails are hydrophobic (water-hating). They automatically arrange themselves in a certain pattern in water because of these properties, and form cell membranes. To form membranes, phospholipids line up next to each other with their heads on the outside of the cell and their tails on the inside. A second layer of phospholipids also forms with heads facing the inside of the cell and tails facing away. In this way, a double layer is formed with phosphate group heads on the outside, and fatty acid tails on the inside. This double layer, called a lipid bilayer, forms the main part of the cell membrane. The nuclear envelope, a membrane surrounding a cell’s nucleus, is also made up of phospholipids arranged in a lipid bilayer, as is the membrane of mitochondria, the part of the cell that produces energy.

This figure depicts the lipid bilayer and the structure of a phospholipid:

What is the name of the second layer that forms a semi permeable barrier around the outside of each cell?

As membrane components, phospholipids are selectively permeable (also called semi-permeable), meaning that only certain molecules can pass through them to enter or exit the cell. Molecules that dissolve in fat can pass through easily, while molecules that dissolve in water cannot. Oxygen, carbon dioxide, and urea are some molecules that can pass through the cell membrane easily. Large molecules like glucose or ions like sodium and potassium cannot pass through easily. This helps keep the contents of the cell working properly and separates the inside of the cell from the surrounding environment.

Phospholipids can be broken down in the cell and used for energy. They can also be split into smaller molecules called chemokines, which regulate a variety of activities in the cell such as production of certain proteins and migration of cells to different areas of the body. Additionally, they are found in areas such as the lung and in joints, where they help lubricate cells.
In pharmaceuticals, phospholipids are used as part of drug delivery systems, which are systems that help transport a drug throughout the body to the area that it is meant to affect. They have high bioavailability, meaning that they are easy for the body to absorb. Valium is an example of a medication that uses a phospholipid-based drug delivery system.

In the food industry, phospholipids can act as emulsifiers, which are substances that disperse oil droplets in water so that the oil and water do not form separate layers. For example, egg yolks contain phospholipids, and are used in mayonnaise to keep it from separating. Phospholipids are found in high concentrations in many other animal and plant sources, such as soybeans, sunflowers, cotton seeds, corn, and even cow brains.

  • Lipid – a class of molecules that includes fats, waxes, and some vitamins, among other molecules.
  • Hydrophilic – a molecule that “loves water”; it is attracted to water molecules and can usually dissolve in water.
  • Hydrophobic – a molecule that “hates water”; it is not attracted to water, but will usually dissolve in oils or fats.
  • Lipid bilayer – a double layer of phospholipids that makes up the cell membrane and other membranes, like the nuclear envelope and the outside of mitochondria.

1. Which is NOT a component of a phospholipid?
A. Glycerol
B. Fatty acids
C. Deoxyribose
D. Phosphate group

C is correct. Each phospholipid is made up of a phosphate group head and two fatty acid tails that are connected by a glycerol molecule. Deoxyribose is not part of phospholipids; it is the 5-carbon sugar found in DNA.

2. Which molecule is hydrophobic?
A. Fatty acid
B. Phosphate group
C. Glucose
D. Carboxylate group

A is correct. Fatty acids are hydrophobic; they are not attracted to water. They are the part of phospholipids that stays on the inside of the lipid bilayer that naturally forms when phospholipids are in a watery solution.

3. What is a function of phospholipids?
A. Being part of a drug delivery system in some pharmaceuticals
B. Regulating cellular activities such as cell migration
C. Forming the cell membrane and the membranes of other organelles in the cell
D. All of the above

D is correct. Phospholipids perform all of these functions in the body.