What is the relationship between water temperature and urchin survival?

  1. Teagle H, Hawkins SJ, Moore PJ, Smale DA. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Mar Bio Ecol. 2017;492:81–98.

    Article  Google Scholar 

  2. Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF. Status and trends for the world’s kelp forests. In: Sheppard C, editor. World Seas: an environmental evaluation, ecological issues and environmental impacts, vol. 3. 2nd ed. Amsterdam: Elsevier; 2019. p. 57–78. https://doi.org/10.1016/b978-0-12-805052-1.00003-6.

    Chapter  Google Scholar 

  3. Graham MH. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems. 2004;7:341–57.

    Article  Google Scholar 

  4. Ling SD. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia. 2008;156:883–94. https://doi.org/10.1007/s00442-008-1043-9.

    CAS  Article  PubMed  Google Scholar 

  5. Filbee-Dexter K, Scheibling RE. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar Ecol Prog Ser. 2014;495:1–25.

    Article  Google Scholar 

  6. Poloczanska ES. Global imprint of climate change on marine life. Nat Clim Change. 2013;3:919–25. https://doi.org/10.1038/NCLIMATE1958.

    Article  Google Scholar 

  7. IPCC. Climate change 2014: impact, adaptation and vulnerability. In: Working group II contribution to the IPCC 5th Assessment Report. Cambridge; 2014.

  8. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–89. https://doi.org/10.1890/03-9000.

    Article  Google Scholar 

  9. Petraitis PS. Effects of body size and water temperature on grazing rates of four intertidal gastropods. Aust J Ecol. 1992;17:409–14.

    Article  Google Scholar 

  10. Sanford E. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr Comp Biol. 2002;42:881–91.

    Article  Google Scholar 

  11. Brown MB, Edwards MS, Kim KY. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae. 2014;29:203–15. https://doi.org/10.4490/algae.2014.29.3.203.

    CAS  Article  Google Scholar 

  12. Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob Change Biol. 2009;15:719–31. https://doi.org/10.1111/j.1365-2486.2008.01734.x.

    Article  Google Scholar 

  13. Christie H, Gundersen H, Rinde E, Filbee-Dexter K, Norderhaug KM, Pedersen T, et al. Can multitrophic interactions and ocean warming influence large-scale kelp recovery? Ecol Evol. 2019;9:2847–62. https://doi.org/10.1002/ece3.4963.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goff JR. A chronology of natural and anthropogenic influences on coastal sedimentation, New Zealand. Mar Geol. 1997;138:105–17. https://doi.org/10.1016/S0025-3227(97)00018-2.

    CAS  Article  Google Scholar 

  15. Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett V, Cayan DR, et al. Climate change impacts on U. S. coastal and marine ecosystems. Estuaries. 2002;25:149–64.

    Article  Google Scholar 

  16. Airoldi L, Beck MW. Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol An Annu Rev. 2007;35:345–405.

    Google Scholar 

  17. Neal EG, Hood E, Smikrud K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys Res Lett. 2010;37:1–5.

    Article  Google Scholar 

  18. Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, et al. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Bio/Technol. 2007;6:95–126. https://doi.org/10.1007/s11157-006-9106-z.

    Article  Google Scholar 

  19. Bonsell C, Dunton KH. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves. Prog Oceanogr. 2018;162:160–70. https://doi.org/10.1016/J.POCEAN.2018.02.016.

    Article  Google Scholar 

  20. Fritz M, Vonk JE, Lantuit H. Collapsing arctic coastlines. Nat Clim Change. 2017;7:6–7. https://doi.org/10.1038/nclimate3188.

    Article  Google Scholar 

  21. Traiger SB, Konar B. Mature and developing kelp bed community composition in a glacial estuary. J Exp Mar Bio Ecol. 2018;501:26–35.

    Article  Google Scholar 

  22. Airoldi L. The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol. 2003;41:161–236.

    Google Scholar 

  23. Filbee-Dexter K, Wernberg T, Fredriksen S, Norderhaug KM, Pedersen MF. Arctic kelp forests: diversity, resilience and future. Glob Planet Change. 2019;172:1–14. https://doi.org/10.1016/J.GLOPLACHA.2018.09.005.

    Article  Google Scholar 

  24. Nearing MA, Pruski FF, O’Neal MR. Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv. 2004;59:43–50.

    Google Scholar 

  25. Ling SD, Scheibling RE, Rassweiler A, Johnson CR, Shears N, Connell SD, et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos Trans R Soc B Biol Sci. 2015;370:20130269. https://doi.org/10.1098/rstb.2013.0269.

    Article  Google Scholar 

  26. Carr LA, Bruno JF. Warming increases the top-down effects and metabolism of a subtidal herbivore. PeerJ. 2013;1:1–15. https://doi.org/10.7717/peerj.109.

    Article  Google Scholar 

  27. Carr LA, Gittman RK, Bruno JF. Temperature influences herbivory and algal biomass in the Galapagos Islands. Front Mar Sci. 2018;5:1–10.

    CAS  Article  Google Scholar 

  28. Provost EJ, Kelaher BP, Dworjanyn SA, Russell BD, Connell SD, Ghedini G, et al. Climate-driven disparities among ecological interactions threaten kelp forest persistence. Glob Change Biol. 2017;23:353–61. https://doi.org/10.1111/gcb.13414.

    Article  Google Scholar 

  29. Hart MW, Scheibling RE. Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar Biol. 1988;99:167–76. https://doi.org/10.1007/BF00391978.

    Article  Google Scholar 

  30. Team NA. Climate change impacts on the united states. New York: Cambridge University Press; 2000.

    Google Scholar 

  31. Lind A, Konar B. Effects of abiotic stressors on kelp early life-history stages. Algae. 2017;32:223–33.

    CAS  Article  Google Scholar 

  32. Royer TC, Grosch CE. Ocean warming and freshening in the northern Gulf of Alaska. Geophys Res Lett. 2006;33:1–6.

    Article  Google Scholar 

  33. Delorme NJ, Sewell MA. Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus. Comp Biochem Physiol Part A Mol Integr Physiol. 2016;198:33–40.

    CAS  Article  Google Scholar 

  34. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  35. RStudio Team. RStudio: integrated development for R. Boston: RStudio Team; 2016.

    Google Scholar 

  36. Bernstein BB, Schroeter SC, Mann KH. Sea urchin (Strongylocentrotus droebachiensis) aggregating behavior investigated by a subtidal multifactorial experiment. Can J Fish Aquat Sci. 1983;40:1975–86.

    Article  Google Scholar 

  37. Lauzon-Guay J, Scheibling R. Behaviour of sea urchin Strongylocentrotus droebachiensis grazing fronts: food-mediated aggregation and density-dependent facilitation. Mar Ecol Prog Ser. 2007;329:191–204. https://doi.org/10.3354/meps329191.

    Article  Google Scholar 

  38. Spurkland T, Iken K. Seasonal growth patterns of Saccharina latissima (Phaeophyceae, Ochrophyta) in a glacially-influenced subarctic estuary. Phycol Res. 2012;60:261–75.

    Article  Google Scholar 

  39. Roleda MY, Dethleff D, Wiencke C. Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biol. 2008;31:765–9.

    Article  Google Scholar 

  40. Pulfrich A, Parkins CA, Branch GM, Bustamante RH, Velasquez CR. The effects of sediment deposits from Namibian diamond mines on intertidal and subtidal reefs and rock lobster populations. Aquat Conserv Mar Freshw Ecosyst. 2003;13:257–78.

    Article  Google Scholar 

  41. Airoldi L, Hawkins SJ. Negative effects of sediment deposition on grazing activity and survival of the limpet Patella vulgata. Mar Ecol Prog Ser. 2007;332:235–40. https://doi.org/10.3354/meps332235.

    CAS  Article  Google Scholar 

  42. Robles C. Disturbance and predation in an assemblage of herbivorous Diptera and algae on rocky shores. Oecologia. 1982;54:23–31.

    Article  Google Scholar 

  43. Walker JW. Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeastern New Zealand. Mar Ecol Prog Ser. 2007;331:109–18.

    Article  Google Scholar 

  44. Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf. 2014;119:717–30. https://doi.org/10.1002/2013JF002931.

    Article  Google Scholar 

  45. Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, et al. North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J Clim. 2014;27:2230–70.

    Article  Google Scholar 

  46. Pirtle JL, Ibarra SN, Eckert GL. Nearshore subtidal community structure compared between inner coast and outer coast sites in Southeast Alaska. Polar Biol. 2012;35:1889–910.

    Article  Google Scholar 

  47. Spurkland T, Iken K. Kelp bed dynamics in estuarine environments in subarctic Alaska. J Coast Res. 2011;275:133–43.

    Article  Google Scholar 

  48. Bogen J. The impact of environmental changes on the sediment loads of Norwegian rivers. CATENA. 2009;79:251–6. https://doi.org/10.1016/j.catena.2009.07.003.

    Article  Google Scholar 

  49. Burnell O, Russell B, Irving A, Connell S. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser. 2013;485:37–46. https://doi.org/10.3354/meps10323.

    CAS  Article  Google Scholar 

  50. Carey N, Harianto J, Byrne M. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. J Exp Biol. 2016;219:1178–86.

    Article  Google Scholar 

  51. Franco J, Wernberg T, Bertocci I, Duarte P, Jacinto D, Vasco-Rodrigues N, et al. Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Mar Ecol Prog Ser. 2015;536:1–9. https://doi.org/10.3354/meps11445.

    Article  Google Scholar 

  52. Siikavuopio SI, James P, Lysne H, Saether BS, Samuelsen TA, Mortensen A. Effects of size and temperature on growth and feed conversion of juvenile green sea urchin (Strongylocentrotus droebachiensis). Aquaculture. 2012;354–355:27–30.

    Article  Google Scholar 

  53. Wheeler M. Temperature dependent feeding habits of the green sea urchin S. droebachiensis, on L. longicruris. JUST. 2017;5:1–5.

    Article  Google Scholar 

  54. McKay K, Heck K. Presence of the Jonah crab Cancer borealis significantly reduces kelp consumption by the green sea urchin Strongylocentrotus droebachiensis. Mar Ecol Prog Ser. 2008;356:295–8. https://doi.org/10.3354/meps07238.

    Article  Google Scholar 

  55. Sanford E, Kelly MW. Local adaptation in marine invertebrates. Ann Rev Mar Sci. 2011;3:509–35. https://doi.org/10.1146/annurev-marine-120709-142756.

    Article  PubMed  Google Scholar 

  56. Scheibling RE, Hatcher BG. Ecology of Strongylocentrotus droebachiensis. In: Lawrence JM, editor. Edible sea urchins: biology and ecology. Amsterdam: Elsevier; 2007. p. 353–92.

    Chapter  Google Scholar 

  57. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, et al. Effects of climate change on global seaweed communities. J Phycol. 2012;48:1064–78.

    CAS  Article  Google Scholar 

  58. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chang F, English CA, et al. Climate change impacts on marine ecosystem. Ann Rev Mar Sci. 2012;4:4.1–4.27.

    Article  Google Scholar 

  59. D’Antonio CM. Role of sand in the domination of hard substrata by the intertidal alga. Mar Ecol Prog Ser. 1986;27:263–75.

    Article  Google Scholar 

  60. Branch GM, Eekhout S, Bosman AL. Short-term effects of the 1988 Orange River floods on the intertidal rocky-shore communities of the open coast. Trans R Soc South Afr. 1990;47:331–54. https://doi.org/10.1080/00359199009520246.

    Article  Google Scholar 

  61. Trowbridge CD. Mesoherbivory: the ascoglossan sea slug Placida dentritica may contribute to the restricted distribution of its algal host. Mar Ecol Prog Ser. 1992;83:207–20.

    Article  Google Scholar 


Page 2

  • Policies
  • Accessibility
  • Press center
  • Support and Contact
  • Leave feedback
  • Careers

Follow BMC

  • BMC Twitter page
  • BMC Facebook page
  • BMC Weibo page