Which of the following can result when antimicrobial therapy disrupts the normal microbiota?

Who proposed the concept of chemotherapy, that compounds might selectively kill pathogenswithout harming people?

Get answer to your question and much more

An antimicrobial that inhibits cell wall synthesis will result in which of the following?

Get answer to your question and much more

Beta-lactam antibiotics have an effect on which of the following types of cells?

Get answer to your question and much more

Which of the following is a primary advantage of semisynthetic drugs?

Get answer to your question and much more

Which of the following drugs specifically targets cell walls that contain arabinogalactan-mycolicacid?

Get answer to your question and much more

Which of the following antibiotics disrupts cytoplasmic membrane function?

Get answer to your question and much more

Which of the following is NOT a target of drugs that inhibit protein synthesis?

Get answer to your question and much more

What is the best interpretation of what is observed on the plate?

Get answer to your question and much more

Which of the following type of antimicrobial agent has the narrowest spectrum of action?

Get answer to your question and much more

The first synthetic antimicrobial widely available for treatment of infectionswas an attachment antagonist

A dysbiosis can be defined as a reduction in microbial diversity and a combination of the loss of beneficial bacteria such as Bacteroides strains and butyrate-producing bacteria such as Firmicutes10 and a rise in pathobionts12 (symbiotic bacteria that become pathogenic under certain conditions), including Proteobacteria, which encompasses gram-negative Escherichia coli.

From: Textbook of Natural Medicine (Fifth Edition), 2020

1. Summers WC. Bacteriophage therapy. Ann Rev Microbiol. 2001;55:437–451. doi: 10.1146/annurev.micro.55.1.437. [PubMed] [CrossRef] [Google Scholar]

2. Abedon ST. Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis. 2009;6:807–815. doi: 10.1089/fpd.2008.0242. [PubMed] [CrossRef] [Google Scholar]

3. Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010;11:28–47. [PubMed] [Google Scholar]

4. Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010;28:591–595. [PubMed] [Google Scholar]

5. Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz) 1999;47:267–274. [PubMed] [Google Scholar]

6. Stratton CW. Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance. Emerg Infect Dis. 2003;9:10–16. [PMC free article] [PubMed] [Google Scholar]

7. Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, et al. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis. 2010;201:52–61. doi: 10.1086/648478. [PubMed] [CrossRef] [Google Scholar]

8. Skurnik M, Strauch E. Phage therapy: facts and fiction. Int J Med Microbiol. 2006;296:5–14. doi: 10.1016/j.ijmm.2005.09.002. [PubMed] [CrossRef] [Google Scholar]

9. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11:69–86. [PubMed] [Google Scholar]

10. Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage therapy. Biotechnol Lett. 2007;29:995–1003. doi: 10.1007/s10529-007-9346-1. [PubMed] [CrossRef] [Google Scholar]

11. Alisky J, Iczkowski K, Rapoport A, Troitsky N. Bacteriophages show promise as antimicrobial agents. J Infect. 1998;36:5–15. doi: 10.1016/S0163-4453(98)92874-2. [PubMed] [CrossRef] [Google Scholar]

12. Górski A, Borysowski J, Miedzybrodzki R, Weber-Dabrowska B. Bacteriophages in medicine. In: McGrath S, van Sinderen D, editors. Bacteriophage: Genetics and Microbiology. Norfolk, UK: Caister Academic Press; 2007. pp. 125–158. [Google Scholar]

13. Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–248. doi: 10.1016/S0065-2164(10)70007-1. [PubMed] [CrossRef] [Google Scholar]

14. Gupta R, Prasad Y. Efficacy of polyvalent bacteriophage p-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol. 2011;62:255–260. doi: 10.1007/s00284-010-9699-x. [PubMed] [CrossRef] [Google Scholar]

15. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325:1089–1093. doi: 10.1126/science.1176667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Mann NH. The potential of phages to prevent MRSA infections. Res Microbiol. 2008;159:400–405. doi: 10.1016/j.resmic.2008.04.003. [PubMed] [CrossRef] [Google Scholar]

17. Clokie MRJ, Kropinski AM. Bacteriophages Methods and Protocols. Isolation, Characterization and Interactions. New York: Humana Press; 2009. [Google Scholar]

18. Krylov VN. Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika. 2001;37:869–887. [PubMed] [Google Scholar]

19. Bentley R, Bennett JW. What is an antibiotic? Revisited. Adv Appl Microbiol. 2003;52:303–331. doi: 10.1016/S0065-2164(03)01012-8. [PubMed] [CrossRef] [Google Scholar]

20. Goodridge LD. Designing phage therapeutics. Curr Pharm Biotechnol. 2010;11:15–27. [PubMed] [Google Scholar]

21. Abedon ST. Bacteriophages and Biofilms: Ecology, Phage Therapy, Plaques. New York: Nova Science Publishers; 2011. [Google Scholar]

22. d'Hérelle F. The bacteriophage. Sci News (Harmondsworth, London) 1949;14:44–59. [Google Scholar]

23. Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol. 1997;5:268–271. doi: 10.1016/S0966-842X(97)01054-8. [PubMed] [CrossRef] [Google Scholar]

24. Ding C, He J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol. 2010;87:925–941. doi: 10.1007/s00253-010-2649-5. [PubMed] [CrossRef] [Google Scholar]

25. Sharma R, Sharma CL, Kapoor B. Antibacterial resistance: current problems and possible solutions. Indian J Med Sci. 2005;59:120–129. doi: 10.4103/0019-5359.15091. [PubMed] [CrossRef] [Google Scholar]

26. Sulakvelidze A, Barrow P. Phage therapy in animals and agribusiness. In: Kutter E, Sulakvelidze A, editors. Bacteriophages: Biology and Application. Boca Raton, FL: CRC Press; 2005. pp. 335–380. [Google Scholar]

27. Gill JJ, Hyman P. Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11:2–14. [PubMed] [Google Scholar]

28. Kramberger P, Honour RC, Herman RE, Smrekar F, Peterka M. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J Virol Meth. 2010;166:60–64. doi: 10.1016/j.jviromet.2010.02.020. [PubMed] [CrossRef] [Google Scholar]

29. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009;4:e4944. doi: 10.1371/journal.pone.0004944. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. d'Hérelle F. Preparation of Therapeutic Bacteriophages, Appendix 1 from: Le Phénomène de la Guérison dans les maladies infectieuses: Masson et Cie, 1938, Paris—OCLC 5784382 (translation by Kuhl SJ, Mazure H) Bacteriophage. 2011;1:55–65. doi: 10.4161/bact.1.2.15680. [CrossRef] [Google Scholar]