Which of the following statements best explains why modification or change in an organ or tissue

1. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–678. [PMC free article] [PubMed] [Google Scholar]

2. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100:693–702. [PubMed] [Google Scholar]

3. Aiello LC, Wheeler P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 1995;36:199–221. [Google Scholar]

4. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002;12:1805–1814. [PMC free article] [PubMed] [Google Scholar]

5. Ambrose S. Chronology of the Later Stone Age and food production in East Africa. J. Arch. Sci. 1998;25:377–391. [Google Scholar]

6. Andersson L, Carriere F, Lowe ME, Nilsson A, Verger R. Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim. Biophys. Acta. 1996;1302:236–240. [PubMed] [Google Scholar]

7. Aoki K. A stochastic model of gene-culture coevolution suggested by the “culture historical hypothesis” for the evolution of adult lactose absorption in humans. Proc. Natl. Acad. Sci. USA. 1986;83:2929–2933. [PMC free article] [PubMed] [Google Scholar]

8. Bachmanov AA, Beauchamp GK. Taste receptor genes. Annu. Rev. Nutr. 2007;27:389–414. [PMC free article] [PubMed] [Google Scholar]

9. Barnicot NA, Harris H, Kalmus H. Taste thresholds of further eighteen compounds and their correlation with P.T.C thresholds. Ann. Eugen. 1951;16:119–128. [PubMed] [Google Scholar]

10. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 2008;40:340–345. [PubMed] [Google Scholar]

11. Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 2004;13:969–980. [PubMed] [Google Scholar]

12. Ben-Arie N, Lancet D, Taylor C, Khen M, Walker N, et al. Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum. Mol. Genet. 1994;3:229–235. [PubMed] [Google Scholar]

13. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 2004;74:1111–1120. [PMC free article] [PubMed] [Google Scholar]

14. Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22:437–446. [PubMed] [Google Scholar]

15. Blakeslee AF. Genetics of sensory thresholds: taste for phenyl thio carbamide. Proc. Natl. Acad. Sci. USA. 1932;18:120–130. [PMC free article] [PubMed] [Google Scholar]

16. Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y. Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet. 2008;4:e1000271. [PMC free article] [PubMed] [Google Scholar]

17. Blumenschine RJ, Prassack KA, Kreger CD, Pante MC. Carnivore tooth-marks, microbial bioerosion, and the invalidation of Dominguez-Rodrigo and Barba’s (2006) test of Oldowan hominin scavenging behavior. J. Hum. Evol. 2007;53:420–426. [PubMed] [Google Scholar]

18. Brain CK, Sillent A. Evidence from the Swartkrans cave for the earliest use of fire. Nature. 1988;336:464–466. [Google Scholar]

19. Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A, et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature. 2002;418:145–151. [PubMed] [Google Scholar]

20. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–187. [PubMed] [Google Scholar]

21. Buller HA, Kothe MJ, Goldman DA, Grubman SA, Sasak WV, et al. Coordinate expression of lactase-phlorizin hydrolase mRNA and enzyme levels in rat intestine during development. J. Biol. Chem. 1990;265:6978–6983. [PubMed] [Google Scholar]

22. Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, et al. Natural selection on protein-coding genes in the human genome. Nature. 2005;437:1153–1157. [PubMed] [Google Scholar]

23. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 1999;22:231–238. [PubMed] [Google Scholar]

24. Carmody RN, Wrangham RW. The energetic significance of cooking. J. Hum. Evol. 2009;57:379–391. [PubMed] [Google Scholar]

25. Cartmill M. A View to a Death in the Morning: Hunting and Nature Through History. Cambridge, MA: Harvard Univ. Press; 1993. [Google Scholar]

26. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, et al. T2Rs function as bitter taste receptors. Cell. 2000;100:703–711. [PubMed] [Google Scholar]

27. Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, et al. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003;302:1960–1963. [PubMed] [Google Scholar]

28. Colagiuri S, Brand Miller J. The “carnivore connection”—evolutionary aspects of insulin resistance. Eur. Clin. Nutr. 2002;56(Suppl. 1):S30–S35. [PubMed] [Google Scholar]

29. Consortium Intl. HapMap. A haplotype map of the human genome. Nature. 2005;437:1299–1320. [PMC free article] [PubMed] [Google Scholar]

30. Cook G. Did persistence of intestinal lactase into adult life originate in the Arabian peninsula? Man. 1978;13:418–427. [Google Scholar]

31. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010 In press. [PMC free article] [PubMed] [Google Scholar]

32. Copeland L, Blazek J, Salman H, Chiming Tang M. Form and functionality of starch. Food Hydrocolloids. 2009;23:1527–1534. [Google Scholar]

33. Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am. J. Clin. Nutr. 2000;71:682–692. [PubMed] [Google Scholar]

34. De Caro J, Eydoux C, Cherif S, Lebrun R, Gargouri Y, et al. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008;150:1–9. [PubMed] [Google Scholar]

35. de Heinzelin J, Clark JD, White T, Hart W, Renne P, et al. Environment and behavior of 2.5-million-year-old Bouri hominids. Science. 1999;284:625–629. [PubMed] [Google Scholar]

36. Dominguez-Rodrigo M, Barba R. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. J. Hum. Evol. 2006;50:170–194. [PubMed] [Google Scholar]

37. Dominy NJ, Vogel ER, Yeakel JD, Constantino P, Lucas PW. Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evol. Biol. 2008;35:159–175. [Google Scholar]

38. Drayna D, Coon H, Kim UK, Elsner T, Cromer K, et al. Genetic analysis of a complex trait in the Utah Genetic Reference Project: a major locus for PTC taste ability on chromosome 7q and a secondary locus on chromosome 16p. Hum. Genet. 2003;112:567–572. [PubMed] [Google Scholar]

39. Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: a review. Am. J. Clin. Nutr. 2000;72:1424–1435. [PubMed] [Google Scholar]

40. Drewnowski A, Rock CL. The influence of genetic taste markers on food acceptance. Am. J. Clin. Nutr. 1995;62:506–511. [PubMed] [Google Scholar]

41. Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 1985;312:283–289. [PubMed] [Google Scholar]

42. Enattah NS, Jensen TG, Nielsen M, Lewinski R, Kuokkanen M, et al. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am. J. Hum. Genet. 2008;82:57–72. [PMC free article] [PubMed] [Google Scholar]

43. Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000;155:1405–1413. [PMC free article] [PubMed] [Google Scholar]

44. Ferguson A, Maxwell JD. Genetic etiology of lactose intolerance. Lancet. 1967;2:188–190. [PubMed] [Google Scholar]

45. Finch CE, Stanford CB. Meat-adaptive genes and the evolution of slower aging in humans. Q. Rev. Biol. 2004;79:3–50. [PubMed] [Google Scholar]

46. Fischer A, Gilad Y, Man O, Paabo S. Evolution of bitter taste receptors in humans and apes. Mol. Biol. Evol. 2005;22:432–436. [PubMed] [Google Scholar]

47. Flatz G, Rotthauwe HW. Lactose nutrition and natural selection. Lancet. 1973;2:76–77. [PubMed] [Google Scholar]

48. Fried M, Abramson S, Meyer JH. Passage of salivary amylase through the stomach in humans. Dig. Dis. Sci. 1987;32:1097–1103. [PubMed] [Google Scholar]

49. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709. [PMC free article] [PubMed] [Google Scholar]

50. Gifford-Gonzalez D. African Archeology. London: Blackwell Sci; 2005. [Google Scholar]

51. Gilad Y, Bustamante CD, Lancet D, Paabo S. Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am. J. Hum. Genet. 2003;73:489–501. [PMC free article] [PubMed] [Google Scholar]

52. Gilad Y, Lancet D. Population differences in the human functional olfactory repertoire. Mol. Biol. Evol. 2003;20:307–314. [PubMed] [Google Scholar]

53. Gilad Y, Man O, Paabo S, Lancet D. Human specific loss of olfactory receptor genes. Proc. Natl. Acad. Sci. USA. 2003;100:3324–3327. [PMC free article] [PubMed] [Google Scholar]

54. Gillespie JH. The Causes of Molecular Evolution. New York: Oxford Univ. Press; 1991. [Google Scholar]

55. Gimelbrant AA, Skaletsky H, Chess A. Selective pressures on the olfactory receptor repertoire since the human-chimpanzee divergence. Proc. Natl. Acad. Sci. USA. 2004;101:9019–9022. [PMC free article] [PubMed] [Google Scholar]

56. Glendinning JI. Is the bitter rejection response always adaptive? Physiol. Behav. 1994;56:1217–1227. [PubMed] [Google Scholar]

57. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. Genome Res. 2001;11:685–702. [PubMed] [Google Scholar]

58. Go Y, Niimura Y. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol. Biol. Evol. 2008;25:1897–1907. [PubMed] [Google Scholar]

59. Goren-Inbar N, Alperson N, Kislev ME, Simchoni O, Melamed Y, et al. Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science. 2004;304:725–727. [PubMed] [Google Scholar]

60. Groot PC, Bleeker MJ, Pronk JC, Arwert F, Mager WH, et al. The human alpha-amylase multigene family consists of haplotypes with variable numbers of genes. Genomics. 1989;5:29–42. [PubMed] [Google Scholar]

61. Haile-Selassie Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature. 2001;412:178–181. [PubMed] [Google Scholar]

62. Hall MJ, Bartoshuk LM, Cain WS, Stevens JC. PTC taste blindness and the taste of caffeine. Nature. 1975;253:442–443. [PubMed] [Google Scholar]

63. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 1999;22:239–247. [PubMed] [Google Scholar]

64. Hanchard NA, Rockett KA, Spencer C, Coop G, Pinder M, et al. Screening for recently selected alleles by analysis of human haplotype similarity. Am. J. Hum. Genet. 2006;78:153–159. [PMC free article] [PubMed] [Google Scholar]

65. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, et al. Human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc. Natl. Acad. Sci. 2010 In press. [PMC free article] [PubMed] [Google Scholar]

66. Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, et al. Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genetics. 2008;4:e32. [PMC free article] [PubMed] [Google Scholar]

67. Harris EF, Hicks JD, Barcroft BD. Tissue contributions to sex and race: differences in tooth crown size of deciduous molars. Am. J. Phys. Anthropol. 2001;115:223–237. [PubMed] [Google Scholar]

68. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat. Genet. 2007;39:1140–1144. [PubMed] [Google Scholar]

69. Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 2007;39:218–225. [PubMed] [Google Scholar]

70. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–2352. [PMC free article] [PubMed] [Google Scholar]

71. Hernandez-Aguilar RA, Moore J, Pickering TR. Savanna chimpanzees use tools to harvest the underground storage organs of plants. Proc. Natl. Acad. Sci. USA. 2007;104:19210–19213. [PMC free article] [PubMed] [Google Scholar]

72. Hernandez Fernandez M, Vrba ES. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. J. Hum. Evol. 2006;50:595–626. [PubMed] [Google Scholar]

73. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, et al. Whole-genome patterns of common DNA variation in three human populations. Science. 2005;307:1072–1079. [PubMed] [Google Scholar]

74. Hoberg EP, Alkire NL, de Queiroz A, Jones A. Out of Africa: origins of the Taenia tapeworms in humans. Proc. Biol. Sci. 2001;268:781–787. [PMC free article] [PubMed] [Google Scholar]

75. Hohmann G, Robbins M, Boesch C. Feeding Ecology in Apes and Other Primates. London: Cambridge Univ. Press; 2006. [Google Scholar]

76. Holden C, Mace R. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 1997;69:605–628. [PubMed] [Google Scholar]

77. Hollox E. SDM. The Genetic Basis of Common Diseases. London: Oxford Univ. Press; 2002. [Google Scholar]

78. Hu CC, Hart TC, Dupont BR, Chen JJ, Sun X, et al. Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development. J. Dent. Res. 2000;79:912–919. [PubMed] [Google Scholar]

79. Hu JC, Yamakoshi Y, Yamakoshi F, Krebsbach PH, Simmer JP. Proteomics and genetics of dental enamel. Cells Tissues Organs. 2005;181:219–231. [PubMed] [Google Scholar]

80. Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994;136:1329–1340. [PMC free article] [PubMed] [Google Scholar]

81. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. Detection of large-scale variation in the human genome. Nat. Genet. 2004;36:949–951. [PubMed] [Google Scholar]

82. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 2009;124:579–591. [PubMed] [Google Scholar]

83. Innan H, Zhang K, Marjoram P, Tavare S, Rosenberg NA. Statistical tests of the coalescent model based on the haplotype frequency distribution and the number of segregating sites. Genetics. 2005;169:1763–1777. [PMC free article] [PubMed] [Google Scholar]

84. Kelley JL, Madeoy J, Calhoun JC, Swanson W, Akey JM. Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Res. 2006;16:980–989. [PMC free article] [PubMed] [Google Scholar]

85. Kelley JL, Swanson WJ. Dietary change and adaptive evolution of enamelin in humans and among primates. Genetics. 2008;178:1595–1603. [PMC free article] [PubMed] [Google Scholar]

86. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science. 2003;299:1221–1225. [PubMed] [Google Scholar]

87. Kinnamon SC, Cummings TA. Chemosensory transduction mechanisms in taste. Annu. Rev. Physiol. 1992;54:715–731. [PubMed] [Google Scholar]

88. Klein RG. Archeology and the evolution of human behavior. Evol. Anthropol. 2000;9:17–36. [Google Scholar]

89. Lacey SW, Naim HY, Magness RR, Gething MJ, Sambrook JF. Expression of lactase-phlorizin hydrolase in sheep is regulated at the RNA level. Biochem. J. 1994;302(Pt. 3):929–935. [PMC free article] [PubMed] [Google Scholar]

90. Laden G, Wrangham R. The rise of the hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins. J. Hum. Evol. 2005;49:482–498. [PubMed] [Google Scholar]

91. Lebenthal E. Role of salivary amylase in gastric and intestinal digestion of starch. Dig. Dis. Sci. 1987;32:1155–1157. [PubMed] [Google Scholar]

92. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–195. [PMC free article] [PubMed] [Google Scholar]

93. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848. [PubMed] [Google Scholar]

94. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319:1100–1104. [PubMed] [Google Scholar]

95. Lindemann B. Chemoreception: tasting the sweet and the bitter. Curr. Biol. 1996;6:1234–1237. [PubMed] [Google Scholar]

96. Louchart A, Wesselman H, Blumenschine RJ, Hlusko LJ, Njau JK, et al. Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science. 2009;326:66e1–66e4. [PubMed] [Google Scholar]

97. Luca F, Bubba G, Basile M, Brdicka R, Michalodimitrakis E, et al. Multiple advantageous amino acid variants in the NAT2 gene in human populations. PLoS One. 2008;3:e3136. [PMC free article] [PubMed] [Google Scholar]

98. Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur. J. Hum. Genet. 2008;16:243–251. [PubMed] [Google Scholar]

99. Mann N. Dietary lean red meat and human evolution. Eur. J. Nutr. 2000;39:71–79. [PubMed] [Google Scholar]

100. Mardh CK, Backman B, Holmgren G, Hu JC, Simmer JP, Forsman-Semb K. A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2) Hum. Mol. Genet. 2002;11:1069–1074. [PubMed] [Google Scholar]

101. Marlowe FW. Hunter-gatherers and human evolution. Evol. Anthropol. 2006;14:54–67. [Google Scholar]

102. McBrearty S, Jablonski NG. First fossil chimpanzee. Nature. 2005;437:105–108. [PubMed] [Google Scholar]

103. McCracken RD. Lactase deficiency—example of dietary evolution. Curr. Anthropol. 1971;12:479. [Google Scholar]

104. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991;351:652–354. [PubMed] [Google Scholar]

105. Messier W, Stewart CB. Episodic adaptive evolution of primate lysozymes. Nature. 1997;385:151–154. [PubMed] [Google Scholar]

106. Metneki J, Czeizel A, Flatz SD, Flatz G. A study of lactose absorption capacity in twins. Hum. Genet. 1984;67:296–300. [PubMed] [Google Scholar]

107. Miller JC, Colagiuri S. The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia. 1994;37:1280–1286. [PubMed] [Google Scholar]

108. Milton K. The critical role played by animal source foods in human (Homo) evolution. J. Nutr. 2003;133:3886S–3892S. [PubMed] [Google Scholar]

109. Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature. 2002;419:448–449. [PubMed] [Google Scholar]

110. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962;14:353–362. [PMC free article] [PubMed] [Google Scholar]

111. Nielsen R. Molecular signatures of natural selection. Annu. Rev. Genet. 2005;39:197–218. [PubMed] [Google Scholar]

112. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 2005;3:e170. [PMC free article] [PubMed] [Google Scholar]

113. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. Recent and ongoing selection in the human genome. Nat. Rev. Genet. 2007;8:857–868. [PMC free article] [PubMed] [Google Scholar]

114. Novembre J, Pritchard JK, Coop G. Adaptive drool in the gene pool. Nat. Genet. 2007;39:1188–1190. [PubMed] [Google Scholar]

115. Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am. J. Hum. Genet. 2006;78:423–436. [PMC free article] [PubMed] [Google Scholar]

116. Pennings PS, Hermisson J. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol. Biol. Evol. 2006;23:1076–1084. [PubMed] [Google Scholar]

117. Pennings PS, Hermisson J. Soft sweeps III: the signature of positive selection from recurrent mutation. PLoS Genet. 2006;2:e186. [PMC free article] [PubMed] [Google Scholar]

118. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 2007;39:1256–1260. [PMC free article] [PubMed] [Google Scholar]

119. Pickford M, Senut B. The geological and faunal context of Late Miocene hominid remains from Lukeino, Kenya. C. R. Acad. Sci. Paris. 2001;332:145–152. [Google Scholar]

120. Pruetz JD, Bertolani P. Savanna chimpanzees, Pan troglodytes verus, hunt with tools. Curr. Biol. 2007;17:412–417. [PubMed] [Google Scholar]

121. Przeworski M, Coop G, Wall JD. The signature of positive selection on standing genetic variation. Evol. Int. J. Org. Evol. 2005;59:2312–2323. [PubMed] [Google Scholar]

122. Reed KE. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 1997;32:289–322. [PubMed] [Google Scholar]

123. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009;9:313–323. [PMC free article] [PubMed] [Google Scholar]

124. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–837. [PubMed] [Google Scholar]

125. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, et al. Positive natural selection in the human lineage. Science. 2006;312:1614–1620. [PubMed] [Google Scholar]

126. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–918. [PMC free article] [PubMed] [Google Scholar]

127. Sahi T. The inheritance of selective adult-type lactose malabsorption. Scand. J. Gastroenterol. Suppl. 1974;30:1–73. [PubMed] [Google Scholar]

128. Salmon TN, Blakeslee AF. Genetics of sensory thresholds: variations within single individuals in taste sensitivity for PTC. Proc. Natl. Acad. Sci. USA. 1935;21:78–83. [PMC free article] [PubMed] [Google Scholar]

129. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336. [PubMed] [Google Scholar]

130. Sayers K, Lovejoy CO. The chimpanzee has no clothes: a critical examination of Pan troglodytes in models of human evolution. Curr. Anthropol. 2008;49:87–114. [Google Scholar]

131. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–1345. [PMC free article] [PubMed] [Google Scholar]

132. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Grine FE, et al. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature. 2005;436:693–695. [PubMed] [Google Scholar]

133. Sebastio G, Villa M, Sartorio R, Guzzetta V, Poggi V, et al. Control of lactase in human adult-type hypolactasia and in weaning rabbits and rats. Am. J. Hum. Genet. 1989;45:489–497. [PMC free article] [PubMed] [Google Scholar]

134. Senut B, Pickford M, Gommery D, Mein P, Cheboi K, Coppens Y. First hominid from the Miocene (Lukeino Formation, Kenya) C. R. Acad. Sci. Paris. 2001;332:137–144. [Google Scholar]

135. Shi P, Zhang J, Yang H, Zhang YP. Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol. Biol. Evol. 2003;20:805–814. [PubMed] [Google Scholar]

136. Shipman P. Scavenging or hunting in early hominids: theoretical framework and tests. Am. Anthropol. 1986;88:27–43. [Google Scholar]

137. Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, et al. Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry. 2004;43:10138–10148. [PubMed] [Google Scholar]

138. Simoons FJ. Primary adult lactose intolerance and the milking habit: a problem in biologic and cultural interrelations. II. A culture historical hypothesis. Am. J. Dig. Dis. 1970;15:695–710. [PubMed] [Google Scholar]

139. Simoons FJ. The geographic hypothesis and lactose malabsorption. A weighing of the evidence. Am. J. Dig. Dis. 1978;23:963–980. [PubMed] [Google Scholar]

140. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–885. [PubMed] [Google Scholar]

141. Soranzo N, Bufe B, Sabeti PC, Wilson JF, Weale ME, et al. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 2005;15:1257–1265. [PubMed] [Google Scholar]

142. Sponheimer M, Passey BH, de Ruiter DJ, Guatelli-Steinberg D, Cerling TE, Lee-Thorp JA. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science. 2006;314:980–982. [PubMed] [Google Scholar]

143. Stadler RH, Blank I, Varga N, Robert F, Hau J, et al. Acrylamide from Maillard reaction products. Nature. 2002;419:449–450. [PubMed] [Google Scholar]

144. Stahl AB. Hominid dietary selection before fire. Curr. Anthropol. 1984;25:151–168. [Google Scholar]

145. Stanford CB. The Hunting Apes: Meat Eating and the Origins of Human Behavior. Princeton, NJ: Princeton Univ. Press; 1999. [Google Scholar]

146. Stanford CB, Bunn HT, editors. Meat-Eating and Human Evolution. London: Oxford Univ. Press; 2001. [Google Scholar]

147. Stanford CB, Wallis J, Matama H, Goodall J. Patterns of predation by chimpanzees on red colobus monkeys in Gombe National Park, 1982–1991. Am. J. Phys. Anthropol. 1994;94:213–228. [PubMed] [Google Scholar]

148. Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature. 2004;428:415–418. [PubMed] [Google Scholar]

149. Strait DS, Weber GW, Neubauer S, Chalk J, Richmond BG, et al. The feeding biomechanics and dietary ecology of. Australopithecus africanus. Proc. Natl. Acad. Sci. USA. 2009;106:2124–2129. [PMC free article] [PubMed] [Google Scholar]

150. Suwa G, Asfaw B, Kono RT, Kubo D, Lovejoy CO, White TD. The Ardipithecus ramidus skull and its implications for hominid origins. Science. 2009;326:68e1–68e7. [PubMed] [Google Scholar]

151. Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 2003;37:197–219. [PubMed] [Google Scholar]

152. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. [PMC free article] [PubMed] [Google Scholar]

153. Tang K, Thornton KR, Stoneking M. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol. 2007;5:e171. [PMC free article] [PubMed] [Google Scholar]

154. Teaford MF, Ungar PS. Diet and the evolution of the earliest human ancestors. Proc. Natl. Acad. Sci. USA. 2000;97:13506–13511. [PMC free article] [PubMed] [Google Scholar]

155. Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, et al. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N. Engl. J. Med. 1999;341:563–568. [PubMed] [Google Scholar]

156. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007;39:31–40. [PMC free article] [PubMed] [Google Scholar]

157. Trask BJ, Massa H, Brand-Arpon V, Chan K, Friedman C, et al. Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Hum. Mol. Genet. 1998;7:2007–2020. [PubMed] [Google Scholar]

158. Ungar PS, Grine FE, Teaford MF. Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annu. Rev. Anthropol. 2006;35:209–228. [Google Scholar]

159. Van Der Merwe NJ, Masao FT, Bamford MK. Isotopic evidence for contrasting diets of early hominins Homo habilus and Australopithecus boisei of Tanzania. S. Afr. J. Sci. 2008;104:153–155. [Google Scholar]

160. Verrelli BC, Lewis CM, Jr, Stone AC, Perry GH. Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol. Biol. Evol. 2008;25:2735–2743. [PMC free article] [PubMed] [Google Scholar]

161. Verrelli BC, Tishkoff SA. Signatures of selection and gene conversion associated with human color vision variation. Am. J. Hum. Genet. 2004;75:363–375. [PMC free article] [PubMed] [Google Scholar]

162. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e72. [PMC free article] [PubMed] [Google Scholar]

163. Wang ET, Kodama G, Baldi P, Moyzis RK. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA. 2006;103:135–140. [PMC free article] [PubMed] [Google Scholar]

164. Wang X, Thomas SD, Zhang J. Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum. Mol. Genet. 2004;13:2671–2678. [PubMed] [Google Scholar]

165. Weiner S, Xu Q, Goldberg P, Liu J, Bar-Yosef O. Evidence for the use of fire at Zhoukoudian, China. Science. 1998;281:251–253. [PubMed] [Google Scholar]

166. Weir BS. Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Assoc; 1996. [Google Scholar]

167. White TD, Ambrose SH, Suwa G, Su DF, DeGusta D, et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science. 2009;326:87–93. [PubMed] [Google Scholar]

168. White TD, Asfaw B, Beyene Y, Haile-Selassie Y, Lovejoy CO, et al. Ardipithecus ramidus and the paleobiology of early hominids. Science. 2009;326:75–86. [PubMed] [Google Scholar]

169. Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. Localizing recent adaptive evolution in the human genome. PLoS Genet. 2007;3:e90. [PMC free article] [PubMed] [Google Scholar]

170. WoldeGabriel G, Ambrose SH, Barboni D, Bonnefille R, Bremond L, et al. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science. 2009;326:65e1–65e5. [PubMed] [Google Scholar]

171. Wooding S, Bufe B, Grassi C, Howard MT, Stone AC, et al. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature. 2006;440:930–934. [PubMed] [Google Scholar]

172. Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D. Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am. J. Hum. Genet. 2004;74:637–646. [PMC free article] [PubMed] [Google Scholar]

173. Wrangham R, Conklin-Brittain N. Cooking as a biological trait. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003;136:35–46. [PubMed] [Google Scholar]

174. Wrangham RW. Catching Fire: How Cooking Made Us Human. New York: Basic Books; 2009. [Google Scholar]

175. Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain N. The raw and the stolen—cooking and the ecology of human origins. Curr. Anthropol. 1999;40:567–594. [PubMed] [Google Scholar]

176. Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 1998;15:568–573. [PubMed] [Google Scholar]

177. Yeakel JD, Bennett NC, Koch PL, Dominy NJ. The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proc. Biol. Sci. 2007;274:1723–1730. [PMC free article] [PubMed] [Google Scholar]

178. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–1341. [PMC free article] [PubMed] [Google Scholar]


Page 2

Which of the following statements best explains why modification or change in an organ or tissue

Timeline of the main dietary shifts during hominin evolution. Approximate dates of existence for human- and chimpanzee/bonobo-lineage genera are depicted in gray boxes. Timing of some of the important dietary transitions in hominin evolution is highlighted in orange and blue boxes to indicate whether these transitions are supported strongly or suggestively, respectively.

  • Which of the following statements best explains why modification or change in an organ or tissue
  • Which of the following statements best explains why modification or change in an organ or tissue
  • Which of the following statements best explains why modification or change in an organ or tissue

Click on the image to see a larger version.