A nurse is providing discharge instructions to a client who has partial thickness burn on the hand

Try the new Google Books

Check out the new look and enjoy easier access to your favorite features

A nurse is providing discharge instructions to a client who has partial thickness burn on the hand

A skin graft is healthy skin that is used to replace damaged or missing skin. The graft is taken from another part of your body. This is called the donor site. You will need to care for both the graft and donor sites as instructed so they heal properly. Follow instructions carefully. It will take 2 to 4 weeks or longer for the graft to completely heal. This varies from person to person and may depend on the size of the graft. 

Your bandages

Your skin graft will have a bandage (dressing). Underneath the graft bandage you may have a “bolster.” This is a padded covering secured to the surrounding skin with stitches. The bolster holds the skin graft in place. Or you may have a vacuum bandage, also called negative pressure dressing. This bandage has a thin, flexible tube attached to a small machine. The machine removes air from under the bandage. This can reduce swelling and speed healing. Your bandage will be first changed after 4 to 7 days. The donor site will have a thin bandage. You will not have a bolster or vacuum bandage on the donor site.

General home care

  • Plan to rest at home for up to a week after the surgery.

  • Expect some light bleeding, swelling, bruising, redness, and discomfort.

  • If you were given prescription pain medicine, take it as instructed.

  • Follow any other instructions you were given.

Caring for the bandaged graft site

  • Do not touch the bandage. Leave it in place until you are told to remove or change it.

  • Keep the bandage dry. Take a sponge bath to avoid getting your bandage wet, unless your healthcare provider tells you otherwise. Ask your provider about the best way to keep your bandage dry when bathing or showering. Ask your provider what to do if your bandage gets wet.

  • Keep the bandaged area clean. Avoid getting dirt or sweat on it.

  • If the bandage comes off or is damaged or very dirty, call your healthcare provider.

  • If the tube on your vacuum bandage comes off, call your healthcare provider.

  • As often as possible, elevate the graft site above the level of your heart. Do this when sitting or lying down. This helps reduce swelling and fluid buildup in the graft area.

  • Keep the part of the body with the graft as still as possible. Avoid any movement that stretches or pulls the skin graft.

  • If the graft bleeds, apply gentle but firm pressure to the graft site with a clean cloth or bandage for 10 minutes.

  • The donor site will have a thin bandage. Do not touch the bandage. Leave it in place until you are told to remove or change it.

  • Fluid will leak from this area. This is normal.

  • If the site becomes swollen or is hot or painful, call your healthcare provider.

  • Your bandage will be removed 7 to 10 days after surgery.

  • After the bandage is removed, the site will be pink. Over time it will return to more normal color.

Activity

You can increase your activity a little bit each day. While you are recovering:

  • Do not do any activity that stretches or moves the skin graft for as long as advised by your health care provider.

  • Do not drive while you are taking prescription pain medicine.

  • Ask others for help with chores and errands.

  • Bathe or shower according to your healthcare provider’s instructions.

  • Ask your healthcare provider when you can return to work.

Follow-up

During your follow-up visits, your doctor will check how you’re healing. If you have sutures, they may be removed 1 to 2 weeks after surgery. Your graft site bandage will be changed 4 days to 7 days after surgery. It will be removed 2 to 3 weeks after surgery. You may have smaller bandages over time as the site heals. Your graft site may have areas that turn dark blue or black. This means that this part of the graft tissue has died. It is common for this to happen in small areas. Your healthcare provider will tell you how to care for this area if needed.

After your bandages are removed

After the bandage is removed, the skin graft may look crusted and discolored. This is normal. The skin graft will change color over time. It may look very red for 2 to 3 months. During this time:

  • Do not scratch, pick at, or touch the graft site or donor site.

  • Keep the skin moist in these areas. Apply nonmedicated skin lotion often during the day. Do this for 3 to 4 months or as advised.

  • Do not soak the skin graft site in water. Ask your healthcare provider about the best way to keep the skin graft dry when showering for 1 to 2 weeks. Do not take baths for 2 to 3 weeks.

  • For 3 to 4 weeks, avoid any exercise or movement that stretches the skin graft.

  • Protect the skin graft and donor site from the sun for 12 months. Wear clothing over them or use a sunscreen lotion with an SPF of 30 or higher.

  • Do not rub, scratch, or injure the graft site in any way.

  • Do not pick at scabs. They help protect the wound and help in healing.

  • Follow all other instructions from your health care provider.

Call your doctor right away if you have any of the following:

  • Fever of 100.4°F (38°C) or higher

  • Pain that gets worse or doesn’t go away

  • Bleeding of the graft that can’t be stopped by applying pressure

  • Signs of infection, including increasing swelling or redness of the graft, white or bad-smelling discharge from the graft, red streaks from the graft site, or pus at the wound site

  • Edges of the graft site that start to open up

  • Any other signs or symptoms indicated by your healthcare provider

1. American Burn Association. National Burn Repository 2019 Update, Report of data from 2009–2018 ameriburn.site-ym.comhttps://ameriburn.site-ym.com/store/ViewProduct.aspx?id=14191872 (2019).

2. Lee RC. Injury by electrical forces: pathophysiology, manifestations, and therapy. Curr. Probl. Surg. 1997;34:677–764. doi: 10.1016/S0011-3840(97)80007-X. [PubMed] [CrossRef] [Google Scholar]

3. Nguyen, C. M., Chandler, R., Ratanshi, I. & Logsetty, S. in Handbook of Burns Vol. 1 (eds. Jeschke, M. G., Kamolz, L.-P., Sjöberg, F. & Wolf, S. E.) 529–547 (Springer, 2020).

4. Jeschke MG, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One. 2011;6:e21245. doi: 10.1371/journal.pone.0021245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Jeschke MG, et al. Pathophysiologic response to severe burn injury. Ann. Surg. 2008;248:387–401. doi: 10.1097/SLA.0b013e318176c4b3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Stanojcic M, Abdullahi A, Rehou S, Parousis A, Jeschke MG. Pathophysiological response to burn injury in adults. Ann. Surg. 2018;267:576–584. doi: 10.1097/SLA.0000000000002097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Porter C, et al. The metabolic stress response to burn trauma: current understanding and therapies. Lancet. 2016;388:1417–1426. doi: 10.1016/S0140-6736(16)31469-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Burnett E, Gawaziuk JP, Shek K, Logsetty S. Healthcare resource utilization associated with burns and necrotizing fasciitis. J. Burn Care Res. 2017;38:e886–e891. doi: 10.1097/BCR.0000000000000513. [PubMed] [CrossRef] [Google Scholar]

9. Enns J, et al. Mental and physical health outcomes in parents of children with burn injuries as compared with matched controls. J. Burn Care Res. 2016;37:e18–e26. doi: 10.1097/BCR.0000000000000309. [PubMed] [CrossRef] [Google Scholar]

10. Logsetty S, et al. Mental health outcomes of burn: a longitudinal population-based study of adults hospitalized for burns. Burns. 2016;42:738–744. doi: 10.1016/j.burns.2016.03.006. [PubMed] [CrossRef] [Google Scholar]

11. Mason SA, et al. Increased rate of long-term mortality among burn survivors. Ann. Surg. 2019;269:1192–1199. doi: 10.1097/SLA.0000000000002722. [PubMed] [CrossRef] [Google Scholar]

12. National Academies of Sciences, Engineering, and Medicine. A National Trauma Care System: Integrating Military and Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury (National Academies Press, 2016). [PubMed]

13. World Health Organization. Burns. WHOhttps://www.who.int/en/news-room/fact-sheets/detail/burns (WHO, 2018).

14. Stone J, et al. Outcomes in adult survivors of childhood burn injuries as compared with matched controls. J. Burn Care Res. 2016;37:e166–e173. doi: 10.1097/BCR.0000000000000323. [PubMed] [CrossRef] [Google Scholar]

15. Rybarczyk MM, et al. A systematic review of burn injuries in low- and middle-income countries: epidemiology in the WHO-defined African region. Afr. J. Emerg. Med. 2017;7:30–37. doi: 10.1016/j.afjem.2017.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Stylianou N, Buchan I, Dunn KW. A review of the international Burn Injury Database (iBID) for England and Wales: descriptive analysis of burn injuries 2003–2011. BMJ Open. 2015;5:e006184. doi: 10.1136/bmjopen-2014-006184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Sethi J, Gawaziuk JP, Cristall N, Logsetty S. The relationship between income and burn incidence in Winnipeg, Manitoba, Canada: a population health study. J. Burn Care Res. 2018;39:645–651. doi: 10.1093/jbcr/iry017. [PubMed] [CrossRef] [Google Scholar]

18. Padalko A, Cristall N, Gawaziuk JP, Logsetty S. Social complexity and risk for pediatric burn injury: a systematic review. J. Burn Care Res. 2019;40:478–499. doi: 10.1093/jbcr/irz059. [PubMed] [CrossRef] [Google Scholar]

19. Peck M, Pressman MA. The correlation between burn mortality rates from fire and flame and economic status of countries. Burns. 2013;39:1054–1059. doi: 10.1016/j.burns.2013.04.010. [PubMed] [CrossRef] [Google Scholar]

20. Spiwak R, Logsetty S, Afifi TO, Sareen J. Severe partner perpetrated burn: examining a nationally representative sample of women in India. Burns. 2015;41:1847–1854. doi: 10.1016/j.burns.2015.08.035. [PubMed] [CrossRef] [Google Scholar]

21. Ready FL, et al. Epidemiologic shifts for burn injury in Ethiopia from 2001 to 2016: implications for public health measures. Burns. 2018;44:1839–1843. doi: 10.1016/j.burns.2018.04.005. [PubMed] [CrossRef] [Google Scholar]

22. World Health Organization. Global Burn Registry. WHOhttps://www.who.int/violence_injury_prevention/burns/gbr/en/ (WHO, 2019). A resource that illustrates the creation of a cheap, easy-to-use registry to better understand the epidemiology of burn injuries around the world.

23. Smolle C, et al. Recent trends in burn epidemiology worldwide: a systematic review. Burns. 2017;43:249–257. doi: 10.1016/j.burns.2016.08.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Greenhalgh DG. Management of burns. N. Engl. J. Med. 2019;380:2349–2359. doi: 10.1056/NEJMra1807442. [PubMed] [CrossRef] [Google Scholar]

25. World Life Expectancy. World Health Rankingshttps://www.worldlifeexpectancy.com/cause-of-death/fires/by-country (2017).

26. Bayuo J, Agbenorku P, Amankwa R, Agbenorku M. Epidemiology and outcomes of burn injury among older adults in a Ghanaian tertiary hospital. Burns Open. 2018;2:98–103. doi: 10.1016/j.burnso.2017.12.003. [CrossRef] [Google Scholar]

27. Sanghavi P, Bhalla K, Das V. Fire-related deaths in India in 2001: a retrospective analysis of data. Lancet. 2009;373:1282–1288. doi: 10.1016/S0140-6736(09)60235-X. [PubMed] [CrossRef] [Google Scholar]

28. Tegtmeyer LC, et al. Retrospective analysis on thermal injuries in children—demographic, etiological and clinical data of German and Austrian pediatric hospitals 2006–2015—approaching the new German burn registry. Burns. 2018;44:150–157. doi: 10.1016/j.burns.2017.05.013. [PubMed] [CrossRef] [Google Scholar]

29. Dissanaike S, Rahimi M. Epidemiology of burn injuries: highlighting cultural and socio-demographic aspects. Int. Rev. Psychiatry. 2009;21:505–511. doi: 10.3109/09540260903340865. [PubMed] [CrossRef] [Google Scholar]

30. Atwell K, Bartley C, Cairns B, Charles A. The effect of pre-existing seizure disorders on mortality and hospital length of stay following burn injury. J. Burn Care Res. 2019;40:979–982. doi: 10.1093/jbcr/irz141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Kallinen O, Maisniemi K, Böhling T, Tukiainen E, Koljonen V. Multiple organ failure as a cause of death in patients with severe burns. J. Burn Care Res. 2012;33:206–211. doi: 10.1097/BCR.0b013e3182331e73. [PubMed] [CrossRef] [Google Scholar]

32. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: pathophysiology of systemic complications and current management. J. Burn Care Res. 2017;38:e469–e481. doi: 10.1097/BCR.0000000000000355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Osuka A, Ogura H, Ueyama M, Shimazu T, Lederer JA. Immune response to traumatic injury: harmony and discordance of immune system homeostasis. Acute Med. Surg. 2014;1:63–69. doi: 10.1002/ams2.17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Sood RF, et al. Early leukocyte gene expression associated with age, burn size, and inhalation injury in severely burned adults. J. Trauma Acute Care Surg. 2016;80:250–257. doi: 10.1097/TA.0000000000000905. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Xiao W, et al. A genomic storm in critically injured humans. J. Exp. Med. 2011;208:2581–2590. doi: 10.1084/jem.20111354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Rowan, M. P. et al. Burn wound healing and treatment: review and advancements. Crit. Care19, (2015). This article provides a comprehensive description of cytokine storm after burn and other traumatic injuries.

37. Muthu K, et al. Perturbed bone marrow monocyte development following burn injury and sepsis promote hyporesponsive monocytes. J. Burn Care Res. 2008;29:12–21. doi: 10.1097/BCR.0b013e31815fa499. [PubMed] [CrossRef] [Google Scholar]

38. Rae L, Fidler P, Gibran N. The physiologic basis of burn shock and the need for aggressive fluid resuscitation. Crit. Care Clin. 2016;32:491–505. doi: 10.1016/j.ccc.2016.06.001. [PubMed] [CrossRef] [Google Scholar]

39. Guillory A, Clayton R, Herndon D, Finnerty C. Cardiovascular dysfunction following burn injury: what we have learned from rat and mouse models. Int. J. Mol. Sci. 2016;17:53. doi: 10.3390/ijms17010053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Lorente JA, et al. Systemic hemodynamics, gastric intramucosal PCO2 changes, and outcome in critically ill burn patients. Crit. Care Med. 2000;28:1728–1735. doi: 10.1097/00003246-200006000-00005. [PubMed] [CrossRef] [Google Scholar]

41. Vaughn L, Beckel N. Severe burn injury, burn shock, and smoke inhalation injury in small animals. Part 1: burn classification and pathophysiology: severe burn injury and smoke inhalation injury. J. Vet. Emerg. Crit. Care. 2012;22:179–186. doi: 10.1111/j.1476-4431.2012.00727.x. [PubMed] [CrossRef] [Google Scholar]

42. Keck M, Herndon DH, Kamolz LP, Frey M, Jeschke MG. Pathophysiology of burns. Wien. Med. Wochenschr. 2009;159:327–336. doi: 10.1007/s10354-009-0651-2. [PubMed] [CrossRef] [Google Scholar]

43. Brooks NC, et al. XBP-1s is linked to suppressed gluconeogenesis in the ebb phase of burn injury. Mol. Med. 2013;19:72–78. doi: 10.2119/molmed.2012.00348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Jeschke MG, et al. Calcium and ER stress mediate hepatic apoptosis after burn injury. J. Cell. Mol. Med. 2009;13:1857–1865. doi: 10.1111/j.1582-4934.2008.00644.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Jeschke MG. The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol. Med. 2009;15:337–351. doi: 10.2119/molmed.2009.00005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Jeschke MG. Postburn hypermetabolism: past, present, and future. J. Burn Care Res. 2016;37:86–96. doi: 10.1097/BCR.0000000000000265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Sidossis LS, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22:219–227. doi: 10.1016/j.cmet.2015.06.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Gore DC, et al. Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients. Crit. Care Med. 2002;30:2438–2442. doi: 10.1097/00003246-200211000-00006. [PubMed] [CrossRef] [Google Scholar]

49. Hart DW, et al. Persistence of muscle catabolism after severe burn. Surgery. 2000;128:312–319. doi: 10.1067/msy.2000.108059. [PubMed] [CrossRef] [Google Scholar]

50. Patsouris D, et al. Burn induces browning of the subcutaneous white adipose tissue in mice and humans. Cell Rep. 2015;13:1538–1544. doi: 10.1016/j.celrep.2015.10.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Finnerty CC, et al. Determination of burn patient outcome by large-scale quantitative discovery proteomics. Crit. Care Med. 2013;41:1421–1434. doi: 10.1097/CCM.0b013e31827c072e. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Seok J, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA. 2013;110:3507–3512. doi: 10.1073/pnas.1222878110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Singer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Kupper TS, Green DR, Durum SK, Baker CC. Defective antigen presentation to a cloned T helper cell by macrophages from burned mice can be restored with interleukin-1. Surgery. 1985;98:199–206. [PubMed] [Google Scholar]

55. Miyazaki H, Kinoshita M, Ono S, Seki S, Saitoh D. Burn-evoked reactive oxygen species immediately after injury are crucial to restore the neutrophil function against postburn infection in mice. Shock. 2015;44:252–257. doi: 10.1097/SHK.0000000000000404. [PubMed] [CrossRef] [Google Scholar]

56. Hampson P, et al. Neutrophil dysfunction, immature granulocytes, and cell-free DNA are early biomarkers of sepsis in burn-injured patients: a prospective observational cohort study. Ann. Surg. 2017;265:1241–1249. doi: 10.1097/SLA.0000000000001807. [PubMed] [CrossRef] [Google Scholar]

57. Antonacci AC, et al. Autologous and allogeneic mixed-lymphocyte responses following thermal injury in man: the immunomodulatory effects of interleukin 1, interleukin 2, and a prostaglandin inhibitor, WY-18251. Clin. Immunol. Immunopathol. 1984;30:304–320. doi: 10.1016/0090-1229(84)90064-3. [PubMed] [CrossRef] [Google Scholar]

58. Baker CC, Miller CL, Trunkey DD. Predicting fatal sepsis in burn patients. J. Trauma. 1979;19:641–648. doi: 10.1097/00005373-197909000-00001. [PubMed] [CrossRef] [Google Scholar]

59. Murphy TJ, Paterson HM, Mannick JA, Lederer JA. Injury, sepsis, and the regulation of Toll-like receptor responses. J. Leukoc. Biol. 2003;75:400–407. doi: 10.1189/jlb.0503233. [PubMed] [CrossRef] [Google Scholar]

60. Schlüter B, König W, Köller M, Erbs G, Müller FE. Differential regulation of T- and B-lymphocyte activation in severely burned patients. J. Trauma. 1991;31:239–246. doi: 10.1097/00005373-199102000-00015. [PubMed] [CrossRef] [Google Scholar]

61. Wood JJ, et al. Inadequate interleukin 2 production. Ann. Surg. 1984;200:311–320. doi: 10.1097/00000658-198409000-00008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Messingham KA, Faunce DE, Kovacs EJ. Alcohol, injury, and cellular immunity. Alcohol. 2002;28:137–149. doi: 10.1016/S0741-8329(02)00278-1. [PubMed] [CrossRef] [Google Scholar]

63. Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: impact of multidrug resistance. Clin. Infect. Dis. 2017;65:2130–2136. doi: 10.1093/cid/cix682. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Rech MA, et al. Outcomes in burn-injured patients who develop sepsis. J. Burn Care Res. 2019;40:269–273. doi: 10.1093/jbcr/irz017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Ballard J, et al. Positive fungal cultures in burn patients: a multicenter review. J. Burn Care Res. 2008;29:213–221. doi: 10.1097/BCR.0b013e31815f6ecb. [PubMed] [CrossRef] [Google Scholar]

66. Gomez R, et al. Causes of mortality by autopsy findings of combat casualties and civilian patients admitted to a burn unit. J. Am. Coll. Surg. 2009;208:348–354. doi: 10.1016/j.jamcollsurg.2008.11.012. [PubMed] [CrossRef] [Google Scholar]

67. Horvath EE, et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann. Surg. 2007;245:978–985. doi: 10.1097/01.sla.0000256914.16754.80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Gosain A, Gamelli RL. Role of the gastrointestinal tract in burn sepsis. J. Burn Care Rehabil. 2005;26:85–91. doi: 10.1097/01.BCR.0000150212.21651.79. [PubMed] [CrossRef] [Google Scholar]

69. Magnotti LJ, Xu DZ, Lu Q, Deitch EA. Gut-derived mesenteric lymph: a link between burn and lung injury. Arch. Surg. 1999;134:1333–1340. doi: 10.1001/archsurg.134.12.1333. [PubMed] [CrossRef] [Google Scholar]

70. Herndon DN, Zeigler ST. Bacterial translocation after thermal injury. Crit. Care Med. 1993;21:S50–S54. doi: 10.1097/00003246-199302001-00010. [PubMed] [CrossRef] [Google Scholar]

71. Baron P, et al. Gut failure and translocation following burn and sepsis. J. Surg. Res. 1994;57:197–204. doi: 10.1006/jsre.1994.1131. [PubMed] [CrossRef] [Google Scholar]

72. Deitch EA, Berg R. Bacterial translocation from the gut. J. Burn Care Rehabil. 1987;8:475–482. doi: 10.1097/00004630-198708060-00005. [PubMed] [CrossRef] [Google Scholar]

73. Beckmann N, Pugh AM, Caldwell CC. Burn injury alters the intestinal microbiome’s taxonomic composition and functional gene expression. PLoS One. 2018;13:e0205307. doi: 10.1371/journal.pone.0205307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Earley ZM, et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS One. 2015;10:e0129996. doi: 10.1371/journal.pone.0129996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Deitch EA, Maejima K, Berg R. Effect of oral antibiotics and bacterial overgrowth on the translocation of the GI tract microflora in burned rats. J. Trauma. 1985;25:385–392. doi: 10.1097/00005373-198505000-00002. [PubMed] [CrossRef] [Google Scholar]

76. Deitch EA, Lu Q, Feketeova E, Hauser CJ, Xu D-Z. Intestinal bacterial overgrowth induces the production of biologically active intestinal lymph. J. Trauma. 2004;56:105–110. doi: 10.1097/01.TA.0000054650.15837.1B. [PubMed] [CrossRef] [Google Scholar]

77. Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev. 2010;12:272–281. doi: 10.1111/j.1467-789X.2010.00797.x. [PubMed] [CrossRef] [Google Scholar]

78. Mutlu E, et al. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol. Clin. Exp. Res. 2009;33:1836–1846. doi: 10.1111/j.1530-0277.2009.01022.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. [PubMed] [CrossRef] [Google Scholar]

80. Shimizu K, et al. Altered gut flora and environment in patients with severe SIRS. J. Trauma. 2006;60:126–133. doi: 10.1097/01.ta.0000197374.99755.fe. [PubMed] [CrossRef] [Google Scholar]

81. Rehberg S, et al. Pathophysiology, management and treatment of smoke inhalation injury. Expert. Rev. Respir. Med. 2009;3:283–297. doi: 10.1586/ers.09.21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Endorf FW, Gamelli RL. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J. Burn Care Res. 2007;28:80–83. doi: 10.1097/BCR.0B013E31802C889F. [PubMed] [CrossRef] [Google Scholar]

83. Grigorian A, et al. Rising mortality in patients with combined burn and trauma. Burns. 2018;44:1989–1996. doi: 10.1016/j.burns.2018.07.003. [PubMed] [CrossRef] [Google Scholar]

84. Krishnan P, Frew Q, Green A, Martin R, Dziewulski P. Cause of death and correlation with autopsy findings in burns patients. Burns. 2013;39:583–588. doi: 10.1016/j.burns.2012.09.017. [PubMed] [CrossRef] [Google Scholar]

85. Capek, K. D., Culnan, D. M., Merkley, K., Huan, T. T. & Trocme, S. in Total Burn Care 5th edn (ed. Herndon, D. N.) 435–444 (Elsevier, 2018).

86. American Burn Association. Prevention. ameriburn.orghttps://ameriburn.org/prevention (2019).

87. American Burn Association. Verification Criteria Effective October 1, 2019. ameriburn.orghttp://ameriburn.org/quality-care/verification/verification-criteria/verification-criteria-effective-october-1-2019/ (2019).

88. Peck M, Molnar J, Swart D. A global plan for burn prevention and care. Bull. World Health Organ. 2009;87:802–803. doi: 10.2471/BLT.08.059733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. World Health Organization. Burn prevention: success stories, lessons learned https://apps.who.int/iris/bitstream/handle/10665/97938/9789241501187_eng.pdf (WHO, 2011).

90. Folz DH, Shults C. The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents. J. Emerg. Manag. 2017;15:379–389. doi: 10.5055/jem.2017.0346. [PubMed] [CrossRef] [Google Scholar]

91. Laing RM, Bryant V. Prevention of burn injuries to children involving nightwear. N. Z. Med. J. 1991;104:363–365. [PubMed] [Google Scholar]

92. Harvey L A, Connolley S, Harvey JG. Clothing-related burns in New South Wales, Australia: impact of legislation on a continuing problem. Burns. 2015;41:58–64. doi: 10.1016/j.burns.2014.10.013. [PubMed] [CrossRef] [Google Scholar]

93. Erdmann TC, Feldman KW, Rivara FP, Heimbach DM, Wall HA. Tap water burn prevention: the effect of legislation. Pediatrics. 1991;88:572–577. [PubMed] [Google Scholar]

94. Haddon W. The changing approach to the epidemiology, prevention, and amelioration of trauma: the transition to approaches etiologically rather than descriptively based. Inj. Prev. 1999;5:231–235. doi: 10.1136/ip.5.3.231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Peck MD, et al. Burns and injuries from non-electric-appliance fires in low- and middle-income countries. Burns. 2008;34:312–319. doi: 10.1016/j.burns.2007.08.009. [PubMed] [CrossRef] [Google Scholar]

96. Sadeghi-Bazargani H, et al. Exploring possible causes of fatal burns in 2007 using Haddon’s Matrix: a qualitative study. J. Inj. Violence Res. 2015;7:1–6. [PMC free article] [PubMed] [Google Scholar]

97. Kahn SA, Patel JH, Lentz CW, Bell DE. Firefighter burn injuries: predictable patterns influenced by turnout gear. J. Burn Care Res. 2012;33:152–156. doi: 10.1097/BCR.0b013e318234d8d9. [PubMed] [CrossRef] [Google Scholar]

98. Burgess J, Watt K, Kimble RM, Cameron CM. Combining technology and research to prevent scald injuries (the Cool Runnings intervention): randomized controlled trial. J. Med. Internet Res. 2018;20:e10361. doi: 10.2196/10361. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Parbhoo A, Louw QA, Grimmer-Somers K. Burn prevention programs for children in developing countries require urgent attention: a targeted literature review. Burns. 2010;36:164–175. doi: 10.1016/j.burns.2009.06.215. [PubMed] [CrossRef] [Google Scholar]

100. Jin R, Wu P, Ho JK, Wang X, Han C. Five-year epidemiology of liquefied petroleum gas-related burns. Burns. 2018;44:210–217. doi: 10.1016/j.burns.2017.05.011. [PubMed] [CrossRef] [Google Scholar]

101. Teven CM, Gottlieb LJ. The four-quadrant approach to ethical issues in burn care. AMA J. Ethics. 2018;20:595–601. doi: 10.1001/journalofethics.2018.20.6.vwpt1-1806. [PubMed] [CrossRef] [Google Scholar]

102. Mohammad A, Branicki F, Abu-Zidan FM. Educational and clinical impact of Advanced Trauma Life Support (ATLS) courses: a systematic review. World J. Surg. 2013;38:322–329. doi: 10.1007/s00268-013-2294-0. [PubMed] [CrossRef] [Google Scholar]

103. Breederveld RS, Nieuwenhuis MK, Tuinebreijer WE, Aardenburg B. Effect of training in the emergency management of severe burns on the knowledge and performance of emergency care workers as measured by an online simulated burn incident. Burns. 2011;37:281–287. doi: 10.1016/j.burns.2010.08.011. [PubMed] [CrossRef] [Google Scholar]

104. Kearns RD, et al. Advanced burn life support for day-to-day burn injury management and disaster preparedness: stakeholder experiences and student perceptions following 56 advance burn life support crimes. J. Burn Care Res. 2015;36:455–464. doi: 10.1097/BCR.0000000000000155. [PubMed] [CrossRef] [Google Scholar]

105. Klein MB, et al. Geographic access to burn center hospitals. JAMA. 2009;302:1774–1781. doi: 10.1001/jama.2009.1548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Henry, S. ATLS 10th edition offers new insights into managing trauma patients. Bulletin of the American College of Sugeonshttp://bulletin.facs.org/2018/06/atls-10th-edition-offers-new-insights-into-managing-trauma-patients/ (2018).

107. Lund C, Browder N. The estimation of areas of burns. Surg. Gynecol. Obstet. 1944;79:352–358. [Google Scholar]

108. Wallace AB. The exposure treatment of burns. Lancet. 1951;257:501–504. doi: 10.1016/S0140-6736(51)91975-7. [PubMed] [CrossRef] [Google Scholar]

109. ISBI Practice Guidelines Committee ISBI practice guidelines for burn care. Burns. 2016;42:953–1021. doi: 10.1016/j.burns.2016.05.013. [PubMed] [CrossRef] [Google Scholar]

110. Foster KN, Holmes JH. Inhalation injury: state of the science 2016. J. Burn Care Res. 2017;38:137–141. doi: 10.1097/BCR.0000000000000539. [PubMed] [CrossRef] [Google Scholar]

111. Ching JA, et al. An analysis of inhalation injury diagnostic methods and patient outcomes. J. Burn Care Res. 2016;37:e27–e32. doi: 10.1097/BCR.0000000000000313. [PubMed] [CrossRef] [Google Scholar]

112. Williams JF, et al. Comparison of traditional burn wound mapping with a computerized program. J. Burn Care Res. 2013;34:e29–e35. doi: 10.1097/BCR.0b013e3182676e07. [PubMed] [CrossRef] [Google Scholar]

113. Benjamin NC, et al. Accuracy of currently used paper burn diagram vs a three-dimensional computerized model. J. Burn Care Res. 2017;38:e254–e260. doi: 10.1097/BCR.0000000000000363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Burke-Smith A, Collier J, Jones I. A comparison of non-invasive imaging modalities: infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns. 2015;41:1695–1707. doi: 10.1016/j.burns.2015.06.023. [PubMed] [CrossRef] [Google Scholar]

115. Wearn C, et al. Prospective comparative evaluation study of laser Doppler imaging and thermal imaging in the assessment of burn depth. Burns. 2018;44:124–133. doi: 10.1016/j.burns.2017.08.004. [PubMed] [CrossRef] [Google Scholar]

116. Sen CK, Ghatak S, Gnyawali SC, Roy S, Gordillo GM. Cutaneous imaging technologies in acute burn and chronic wound care. Plast. Reconstr. Surg. 2016;138:119S–128S. doi: 10.1097/PRS.0000000000002654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Ganapathy P, et al. Dual-imaging system for burn depth diagnosis. Burns. 2014;40:67–81. doi: 10.1016/j.burns.2013.05.004. [PubMed] [CrossRef] [Google Scholar]

118. Burmeister DM, et al. Noninvasive techniques for the determination of burn severity in real time. J. Burn Care Res. 2017;38:e180–e191. doi: 10.1097/BCR.0000000000000338. [PubMed] [CrossRef] [Google Scholar]

119. Greenhalgh DG. Burn resuscitation: the results of the ISBI/ABA survey. Burns. 2010;36:176–182. doi: 10.1016/j.burns.2009.09.004. [PubMed] [CrossRef] [Google Scholar]

120. Chung KK, et al. Simple derivation of the initial fluid rate for the resuscitation of severely burned adult combat casualties: in silico validation of the rule of 10. J. Trauma. 2010;69:S49–S54. doi: 10.1097/TA.0b013e3181e425f1. [PubMed] [CrossRef] [Google Scholar]

121. Mosier MJ, et al. Early acute kidney injury predicts progressive renal dysfunction and higher mortality in severely burned adults. J. Burn Care Res. 2010;31:83–92. doi: 10.1097/BCR.0b013e3181cb8c87. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Kumar AB, et al. Fluid resuscitation mediates the association between inhalational burn injury and acute kidney injury in the major burn population. J. Crit. Care. 2017;38:62–67. doi: 10.1016/j.jcrc.2016.10.008. [PubMed] [CrossRef] [Google Scholar]

123. Sine CR, et al. Acute respiratory distress syndrome in burn patients. J. Burn Care Res. 2016;37:e461–e469. doi: 10.1097/BCR.0000000000000348. [PubMed] [CrossRef] [Google Scholar]

124. Cochran A. Inhalation injury and endotracheal intubation. J. Burn Care Res. 2009;30:190–191. doi: 10.1097/BCR.0b013e3181923eb4. [PubMed] [CrossRef] [Google Scholar]

125. Amtmann D, et al. Satisfaction with life over time in people with burn injury: a National Institute on Disability, Independent Living, and Rehabilitation Research burn model system study. Arch. Phys. Med. Rehabil. 2020;101:S63–S70. doi: 10.1016/j.apmr.2017.09.119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Wiechman SA, et al. Reasons for distress among burn survivors at 6, 12, and 24 months postdischarge: a burn injury model system investigation. Arch. Phys. Med. Rehabil. 2018;99:1311–1317. doi: 10.1016/j.apmr.2017.11.007. [PubMed] [CrossRef] [Google Scholar]

127. Mason SA, et al. Association between burn injury and mental illness among burn survivors: a population-based, self-matched, longitudinal cohort study. J. Am. Coll. Surg. 2017;225:516–524. doi: 10.1016/j.jamcollsurg.2017.06.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Davé DR, Nagarjan N, Canner JK, Kushner AL, Stewart BT. Rethinking burns for low & middle-income countries: differing patterns of burn epidemiology, care seeking behavior, and outcomes across four countries. Burns. 2018;44:1228–1234. doi: 10.1016/j.burns.2018.01.015. [PubMed] [CrossRef] [Google Scholar]

129. Young AW, et al. Guideline for burn care under austere conditions. J. Burn Care Res. 2017;38:e497–e509. doi: 10.1097/BCR.0000000000000369. [PubMed] [CrossRef] [Google Scholar]

130. Jeng J, Gibran N, Peck M. Burn care in disaster and other austere settings. Surg. Clin. North. Am. 2014;94:893–907. doi: 10.1016/j.suc.2014.05.011. [PubMed] [CrossRef] [Google Scholar]

131. American College of Surgeons. Advanced Trauma Life Support. facs.orghttps://www.facs.org/quality%20programs/trauma/atls (2019).

132. American Burn Association. Burn Center Referral Criteria. ameriburn.orghttp://ameriburn.org/wp-content/uploads/2017/05/burncenterreferralcriteria.pdf (2006).

133. Roberts G, et al. The Baux score is dead. Long live the Baux score: a 27-year retrospective cohort study of mortality at a regional burns service. J. Trauma. Acute Care Surg. 2012;72:251–256. doi: 10.1097/TA.0b013e31824052bb. [PubMed] [CrossRef] [Google Scholar]

134. Klein MB, et al. Benchmarking outcomes in the critically injured burn patient. Ann. Surg. 2014;259:833–841. doi: 10.1097/SLA.0000000000000438. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Romanowski K, et al. The frailty tipping point: determining which patients are targets for intervention in a burn population. Burns. 2019;45:1051–1056. doi: 10.1016/j.burns.2018.11.003. [PubMed] [CrossRef] [Google Scholar]

136. Rehou S, Shahrokhi S, Thai J, Stanojcic M, Jeschke MG. Acute phase response in critically ill elderly burn patients. Crit. Care Med. 2019;47:201–209. doi: 10.1097/CCM.0000000000003516. [PubMed] [CrossRef] [Google Scholar]

137. Grigorian A, et al. 23 burns in octogenarians: 80 is the new 60. J. Burn Care Res. 2019;40:S19. doi: 10.1093/jbcr/irz013.027. [CrossRef] [Google Scholar]

138. Lawrence A, et al. Colloid administration normalizes resuscitation ratio and ameliorates “fluid creep” J. Burn Care Res. 2010;31:40–47. doi: 10.1097/BCR.0b013e3181cb8c72. [PubMed] [CrossRef] [Google Scholar]

139. Ivy ME, et al. Intra-abdominal hypertension and abdominal compartment syndrome in burn patients. J. Trauma. 2000;49:387–391. doi: 10.1097/00005373-200009000-00001. [PubMed] [CrossRef] [Google Scholar]

140. O’Mara MS, Slater H, Goldfarb IW, Caushaj PF. A prospective, randomized evaluation of intra-abdominal pressures with crystalloid and colloid resuscitation in burn patients. J. Trauma. 2005;58:1011–1018. doi: 10.1097/01.TA.0000162732.39083.15. [PubMed] [CrossRef] [Google Scholar]

141. Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit. Care. 2017;21:160. doi: 10.1186/s13054-017-1745-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. MacLennan S, Williamson LM. Risks of fresh frozen plasma and platelets. J. Trauma. 2006;60:S46–S50. [PubMed] [Google Scholar]

143. Rizzo JA, Rowan MP, Driscoll IR, Chung KK, Friedman BC. Vitamin C in burn resuscitation. Crit. Care Clin. 2016;32:539–546. doi: 10.1016/j.ccc.2016.06.003. [PubMed] [CrossRef] [Google Scholar]

144. Dubick MA, Williams C, Elgjo GI, Kramer GC. High-dose vitamin C infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock. 2005;24:139–144. doi: 10.1097/01.shk.0000170355.26060.e6. [PubMed] [CrossRef] [Google Scholar]

145. Tanaka H, et al. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch. Surg. 2000;135:326–331. doi: 10.1001/archsurg.135.3.326. [PubMed] [CrossRef] [Google Scholar]

146. Fowler AA, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322:1261–1270. doi: 10.1001/jama.2019.11825. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J. Burn Care Res. 2011;32:110–117. doi: 10.1097/BCR.0b013e318204b336. [PubMed] [CrossRef] [Google Scholar]

148. Buehner M, et al. Oxalate nephropathy after continuous infusion of high-dose vitamin C as an adjunct to burn resuscitation. J. Burn Care Res. 2016;37:e374–e379. doi: 10.1097/BCR.0000000000000233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Sartor Z, Kesey J, Dissanaike S. The effects of intravenous vitamin C on point-of-care glucose monitoring. J. Burn Care Res. 2015;36:50–56. doi: 10.1097/BCR.0000000000000142. [PubMed] [CrossRef] [Google Scholar]

150. Neff LP, Allman JM, Holmes JH. The use of theraputic plasma exchange (TPE) in the setting of refractory burn shock. Burns. 2010;36:372–378. doi: 10.1016/j.burns.2009.05.006. [PubMed] [CrossRef] [Google Scholar]

151. Klein MB, et al. The beneficial effects of plasma exchange after severe burn injury. J. Burn Care Res. 2009;30:243–248. doi: 10.1097/BCR.0b013e318198a30d. [PubMed] [CrossRef] [Google Scholar]

152. Heering P, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997;23:288–296. doi: 10.1007/s001340050330. [PubMed] [CrossRef] [Google Scholar]

153. Payen D, et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit. Care Med. 2009;37:803–810. doi: 10.1097/CCM.0b013e3181962316. [PubMed] [CrossRef] [Google Scholar]

154. Chung KK, et al. High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: a multicenter randomized controlled trial. Crit. Care. 2017;21:289. doi: 10.1186/s13054-017-1878-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. You B, et al. Early application of continuous high-volume haemofiltration can reduce sepsis and improve the prognosis of patients with severe burns. Crit. Care. 2018;22:173. doi: 10.1186/s13054-018-2095-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Pruitt BAJr, O’Neill JAJr, Moncrief JA, Lindberg RB. Successful control of burn-wound sepsis. JAMA. 1968;203:1054–1056. doi: 10.1001/jama.1968.03140120052012. [PubMed] [CrossRef] [Google Scholar]

157. Burke JF, Bondoc CC, Quinby WC. Primary burn excision and immediate grafting: a method shortening illness. J. Trauma. 1974;14:389–395. doi: 10.1097/00005373-197405000-00005. [PubMed] [CrossRef] [Google Scholar]

158. Desai MH, et al. Early burn wound excision significantly reduces blood loss. Ann. Surg. 1990;211:753–762. doi: 10.1097/00000658-199006000-00015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Herndon DN, et al. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann. Surg. 1989;209:547–553. doi: 10.1097/00000658-198905000-00006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Hermans MHE. Results of an internet survey on the treatment of partial thickness burns, full thickness burns, and donor sites. J. Burn Care Res. 2007;28:835–847. doi: 10.1097/BCR.0b013e3181599b88. [PubMed] [CrossRef] [Google Scholar]

161. Carta T, et al. Properties of an ideal burn dressing: a survey of burn survivors and front-line burn healthcare providers. Burns. 2019;45:364–368. doi: 10.1016/j.burns.2018.09.021. [PubMed] [CrossRef] [Google Scholar]

162. Horch R, Stark GB, Kopp J, Spilker G. Cologne Burn Centre experiences with glycerol-preserved allogeneic skin: part I: clinical experiences and histological findings (overgraft and sandwich technique) Burns. 1994;20:S23–S26. doi: 10.1016/0305-4179(94)90084-1. [PubMed] [CrossRef] [Google Scholar]

163. Ren J, et al. The use of noncultured regenerative epithelial suspension for improving skin color and scars: a report of 8 cases and review of the literature. J. Cosmet. Dermatol. 2019;18:1487–1494. doi: 10.1111/jocd.13071. [PubMed] [CrossRef] [Google Scholar]

164. Merchant N, et al. Management of adult patients with buttock and perineal burns: the Ross Tilley Burn Centre experience. J. Trauma. Acute Care Surg. 2014;77:640–648. doi: 10.1097/TA.0000000000000405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Murphy PS, Evans GRD. Advances in wound healing: a review of current wound healing products. Plast. Surg. Int. 2012;2012:190436. [PMC free article] [PubMed] [Google Scholar]

166. Chocarro‐Wrona C, López‐Ruiz E, Perán M, Gálvez‐Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J. Eur. Acad. Dermatol. Venereol. 2019;33:484–496. doi: 10.1111/jdv.15391. [PubMed] [CrossRef] [Google Scholar]

167. Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv. Drug. Deliv. Rev. 2018;129:219–241. doi: 10.1016/j.addr.2018.03.002. [PubMed] [CrossRef] [Google Scholar]

168. Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019;216:119267. doi: 10.1016/j.biomaterials.2019.119267. [PubMed] [CrossRef] [Google Scholar]

169. Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell. Mol. Life Sci. 2016;73:3453–3472. doi: 10.1007/s00018-016-2252-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for skin substitutes. Adv. Healthc. Mater. 2018;7:1700897. doi: 10.1002/adhm.201700897. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. PolarityTE. SkinTE for providers. polarityte.comhttps://www.polarityte.com/products/skinTE-providers (2020).

172. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface. 2010;7:229–258. doi: 10.1098/rsif.2009.0403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Davison-Kotler E, Sharma V, Kang NV, Garcia-Gareta E. A universal classification system of skin substitutes inspired by factorial design. Tissue Eng. Part B Rev. 2018;24:279–288. doi: 10.1089/ten.teb.2017.0477. [PubMed] [CrossRef] [Google Scholar]

174. Nicholas MN, Yeung J. Current status and future of skin substitutes for chronic wound healing. J. Cutan. Med. Surg. 2017;21:23–30. doi: 10.1177/1203475416664037. [PubMed] [CrossRef] [Google Scholar]

175. Halim AS, Khoo TL, Yussof SJM. Biologic and synthetic skin substitutes: an overview. Indian. J. Plast. Surg. 2010;43:S23–S28. doi: 10.4103/0970-0358.70712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Mohan R, Bajaj A, Gundappa M. Human amnion membrane: potential applications in oral and periodontal field. J. Int. Soc. Prev. Community Dent. 2017;7:15–21. doi: 10.4103/jispcd.JISPCD_359_16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. van Zuijlen PPM, et al. Tissue engineering in burn scar reconstruction. Burns Trauma. 2015;3:18. [PMC free article] [PubMed] [Google Scholar]

178. Haddad AG, Giatsidis G, Orgill DP, Halvorson EG. Skin substitutes and bioscaffolds. Clin. Plast. Surg. 2017;44:627–634. doi: 10.1016/j.cps.2017.02.019. [PubMed] [CrossRef] [Google Scholar]

179. Fang T, Lineaweaver WC, Sailes FC, Kisner C, Zhang F. Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries. Ann. Plast. Surg. 2014;73:509–515. doi: 10.1097/SAP.0b013e3182840883. [PubMed] [CrossRef] [Google Scholar]

180. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011;17:113–125. doi: 10.2119/molmed.2009.00153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Finnerty CC, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;388:1427–1436. doi: 10.1016/S0140-6736(16)31406-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Vincent AS, et al. Human skin keloid fibroblasts display bioenergetics of cancer cells. J. Invest. Dermatol. 2008;128:702–709. doi: 10.1038/sj.jid.5701107. [PubMed] [CrossRef] [Google Scholar]

183. Tsai C-H, Ogawa R. Keloid research: current status and future directions. Scars Burn. Heal. 2019;5:2059513119868659. [PMC free article] [PubMed] [Google Scholar]

184. Nitzschke SL, et al. Wound healing trajectories in burn patients and their impact on mortality. J. Burn Care Res. 2014;35:474–479. doi: 10.1097/BCR.0000000000000039. [PubMed] [CrossRef] [Google Scholar]

185. Lester ME, Hazelton J, Dewey WS, Casey JC, Richard R. Influence of upper extremity positioning on pain, paresthesia, and tolerance. J. Burn Care Res. 2013;34:e342–e350. doi: 10.1097/BCR.0b013e3182788f52. [PubMed] [CrossRef] [Google Scholar]

186. Nedelec B, Serghiou MA, Niszczak J, McMahon M, Healey T. Practice guidelines for early ambulation of burn survivors after lower extremity grafts. J. Burn Care Res. 2012;33:319–329. doi: 10.1097/BCR.0b013e31823359d9. [PubMed] [CrossRef] [Google Scholar]

187. Richard R, Santos-Lozada AR. Burn patient acuity demographics, scar contractures, and rehabilitation treatment time related to patient outcomes. J. Burn Care Res. 2017;38:230–242. doi: 10.1097/BCR.0000000000000490. [PubMed] [CrossRef] [Google Scholar]

188. Wiechman SA, Patterson DR. ABC of burns. Psychosocial aspects of burn injuries. BMJ. 2004;329:391–393. doi: 10.1136/bmj.329.7462.391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Ravenek MJ, Skarakis-Doyle E, Spaulding SJ, Jenkins ME, Doyle PC. Enhancing the conceptual clarity and utility of the international classification of functioning, disability & health: the potential of a new graphic representation. Disabil. Rehabil. 2013;35:1015–1025. doi: 10.3109/09638288.2012.717582. [PubMed] [CrossRef] [Google Scholar]

190. Miller T, et al. Quality-of-life loss of people admitted to burn centers, United States. Qual. Life Res. 2013;22:2293–2305. doi: 10.1007/s11136-012-0321-5. [PubMed] [CrossRef] [Google Scholar]

191. Öster C, Willebrand M, Dyster-Aas J, Kildal M, Ekselius L. Validation of the EQ-5D questionnaire in burn injured adults. Burns. 2009;35:723–732. doi: 10.1016/j.burns.2008.11.007. [PubMed] [CrossRef] [Google Scholar]

192. Kildal M, Andersson G, Fugl-Meyer AR, Lannerstam K, Gerdin B. Development of a brief version of the Burn Specific Health Scale (BSHS-B) J. Trauma. 2001;51:740–746. doi: 10.1097/00005373-200110000-00020. [PubMed] [CrossRef] [Google Scholar]

193. Spronk I, et al. Health related quality of life in adults after burn injuries: a systematic review. PLoS One. 2018;13:e0197507. doi: 10.1371/journal.pone.0197507. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Griffiths C, et al. A systematic review of patient reported outcome measures (PROMs) used in child and adolescent burn research. Burns. 2015;41:212–224. doi: 10.1016/j.burns.2014.07.018. [PubMed] [CrossRef] [Google Scholar]

195. Griffiths C, et al. A systematic review of patient-reported outcome measures used in adult burn research. J. Burn Care Res. 2017;38:e521–e545. doi: 10.1097/BCR.0000000000000474. [PubMed] [CrossRef] [Google Scholar]

196. Tyack Z, et al. Measuring the impact of burn scarring on health-related quality of life: development and preliminary content validation of the Brisbane Burn Scar Impact Profile (BBSIP) for children and adults. Burns. 2015;41:1405–1419. doi: 10.1016/j.burns.2015.05.021. [PubMed] [CrossRef] [Google Scholar]

197. Kool MB, Geenen R, Egberts MR, Wanders H, Van Loey NE. Patients’ perspectives on quality of life after burn. Burns. 2017;43:747–756. doi: 10.1016/j.burns.2016.11.016. [PubMed] [CrossRef] [Google Scholar]

198. Meirte J, et al. Classification of quality of life subscales within the ICF framework in burn research: identifying overlaps and gaps. Burns. 2014;40:1353–1359. doi: 10.1016/j.burns.2014.01.015. [PubMed] [CrossRef] [Google Scholar]

199. Meirte J, et al. Convergent and discriminant validity of quality of life measures used in burn populations. Burns. 2017;43:84–92. doi: 10.1016/j.burns.2016.07.001. [PubMed] [CrossRef] [Google Scholar]

200. Edgar D, Dawson A, Hankey G, Phillips M, Wood F. Demonstration of the validity of the SF-36 for measurement of the temporal recovery of quality of life outcomes in burns survivors. Burns. 2010;36:1013–1020. doi: 10.1016/j.burns.2010.03.001. [PubMed] [CrossRef] [Google Scholar]

201. Tyack Z, Kimble R, McPhail S, Plaza A, Simons M. Psychometric properties of the Brisbane Burn Scar Impact Profile in adults with burn scars. PLoS One. 2017;12:e0184452. doi: 10.1371/journal.pone.0184452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Griffiths C, et al. The development and validation of the CARe burn scale—adult form: a Patient-Reported Outcome Measure (PROM) to assess quality of life for adults living with a burn injury. J. Burn Care Res. 2019;40:312–326. doi: 10.1093/jbcr/irz021. [PubMed] [CrossRef] [Google Scholar]

203. Kazis LE, et al. Development of the life impact burn recovery evaluation (LIBRE) profile: assessing burn survivors’ social participation. Qual. Life Res. 2017;26:2851–2866. doi: 10.1007/s11136-017-1588-3. [PubMed] [CrossRef] [Google Scholar]

204. McMahon HA, Ndem I, Gampper L, Gampper TJ, DeGeorge BR. Quantifying burn injury-related disability and quality of life in the developing world: a primer for patient-centered resource allocation. Ann. Plast. Surg. 2019;82:S433–S436. doi: 10.1097/SAP.0000000000001678. [PubMed] [CrossRef] [Google Scholar]

205. Kazis LE, et al. Methods for assessment of health outcomes in children with burn injury: the multi-center benchmarking study. J. Trauma. Acute Care Surg. 2012;73:S179–S188. doi: 10.1097/TA.0b013e318265c552. [PubMed] [CrossRef] [Google Scholar]

206. Ryan CM, et al. Benchmarks for multidimensional recovery after burn injury in young adults: the development, validation, and testing of the American Burn Association/Shriners Hospitals for Children young adult burn outcome questionnaire. J. Burn Care Res. 2013;34:e121–e142. doi: 10.1097/BCR.0b013e31827e7ecf. [PubMed] [CrossRef] [Google Scholar]

207. Kazis LE, et al. Recovery curves for pediatric burn survivors: advances in patient-oriented outcomes. JAMA Pediatr. 2016;170:534. doi: 10.1001/jamapediatrics.2015.4722. [PubMed] [CrossRef] [Google Scholar]

208. Spronk I, et al. Recovery of health-related quality of life after burn injuries: an individual participant data meta-analysis. PLoS One. 2020;15:e0226653. doi: 10.1371/journal.pone.0226653. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Wasiak J, et al. Female patients display poorer burn-specific quality of life 12 months after a burn injury. Injury. 2017;48:87–93. doi: 10.1016/j.injury.2016.07.032. [PubMed] [CrossRef] [Google Scholar]

210. Chin TL, et al. Trends 10 years after burn injury: a burn model system national database study. Burns. 2018;44:1882–1886. doi: 10.1016/j.burns.2018.09.033. [PubMed] [CrossRef] [Google Scholar]

211. Levi B, et al. The associations of gender with social participation of burn survivors: a life impact burn recovery evaluation profile study. J. Burn Care Res. 2018;39:915–922. doi: 10.1093/jbcr/iry007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Spronk I, et al. Predictors of health-related quality of life after burn injuries: a systematic review. Crit. Care. 2018;22:160. doi: 10.1186/s13054-018-2071-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Spronk I, et al. Health related quality of life 5–7 years after minor and severe burn injuries: a multicentre cross-sectional study. Burns. 2019;45:1291–1299. doi: 10.1016/j.burns.2019.03.017. [PubMed] [CrossRef] [Google Scholar]

214. Öster C, Willebrand M, Ekselius L. Health-related quality of life 2 years to 7 years after burn injury. J. Trauma. 2011;71:1435–1441. doi: 10.1097/TA.0b013e318208fc74. [PubMed] [CrossRef] [Google Scholar]

215. Needham DM, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit. Care Med. 2012;40:502–509. doi: 10.1097/CCM.0b013e318232da75. [PubMed] [CrossRef] [Google Scholar]

216. Deeter L, et al. Hospital-acquired complications alter quality of life in adult burn survivors: report from a burn model system. Burns. 2019;45:42–47. doi: 10.1016/j.burns.2018.10.010. [PubMed] [CrossRef] [Google Scholar]

217. Yoder LH, McFall DC, Glaser DN. Quality of life of burn survivors treated in the military burn center. Nurs. Outlook. 2017;65:S81–S89. doi: 10.1016/j.outlook.2017.07.005. [PubMed] [CrossRef] [Google Scholar]

218. Al Ghriwati N, et al. Two-year gender differences in satisfaction with appearance after burn injury and prediction of five-year depression: a latent growth curve approach. Arch. Phys. Med. Rehabil. 2017;98:2274–2279. doi: 10.1016/j.apmr.2017.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Sinha I, et al. Head and neck burns are associated with long-term patient-reported dissatisfaction with appearance: a burn model system national database study. Burns. 2019;45:293–302. doi: 10.1016/j.burns.2018.12.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Gerrard P, et al. Validation of the community integration questionnaire in the adult burn injury population. Qual. Life Res. 2015;24:2651–2655. doi: 10.1007/s11136-015-0997-4. [PubMed] [CrossRef] [Google Scholar]

221. Ryan CM, Cartwright S, Schneider JC, Tompkins RG, Kazis LE. The burn outcome questionnaires: patient and family reported outcome metrics for children of all ages. Burns. 2016;42:1144–1145. doi: 10.1016/j.burns.2015.10.033. [PubMed] [CrossRef] [Google Scholar]

222. World Health Organization. International Classification of Functioning, Disability and Health (ICF). https://www.who.int/classifications/icf/en/ (WHO, 2018). [PMC free article] [PubMed]

223. Osborne CL, et al. The multicenter benchmarking study of burn injury: a content analysis of the outcome measures using the international classification of functioning, disability and health. Burns. 2016;42:1396–1403. doi: 10.1016/j.burns.2016.07.023. [PubMed] [CrossRef] [Google Scholar]

224. Spronk I, Legemate CM, Polinder S, van Baar ME. Health-related quality of life in children after burn injuries. J. Trauma. Acute Care Surg. 2018;85:1110–1118. doi: 10.1097/TA.0000000000002072. [PubMed] [CrossRef] [Google Scholar]

225. Pan R, et al. Health-related quality of life in adolescent survivors of burns: agreement on self-reported and mothers’ and fathers’ perspectives. Burns. 2015;41:1107–1113. doi: 10.1016/j.burns.2014.12.011. [PubMed] [CrossRef] [Google Scholar]

226. Meyer WJ, et al. Adolescent survivors of burn injuries and their parents’ perceptions of recovery outcomes: do they agree or disagree? J. Trauma. Acute Care Surg. 2012;73:S213–S220. doi: 10.1097/TA.0b013e318265c843. [PubMed] [CrossRef] [Google Scholar]

227. Mason ST, et al. Return to work after burn injury: a systematic review. J. Burn Care Res. 2012;33:101–109. doi: 10.1097/BCR.0b013e3182374439. [PubMed] [CrossRef] [Google Scholar]

228. Quinn T, Wasiak J, Cleland H. An examination of factors that affect return to work following burns: a systematic review of the literature. Burns. 2010;36:1021–1026. doi: 10.1016/j.burns.2009.10.001. [PubMed] [CrossRef] [Google Scholar]

229. Goei H, et al. Return to work after specialised burn care: a two-year prospective follow-up study of the prevalence, predictors and related costs. Injury. 2016;47:1975–1982. doi: 10.1016/j.injury.2016.03.031. [PubMed] [CrossRef] [Google Scholar]

230. Christiansen M, et al. Time to school re-entry after burn injury is quite short. J. Burn Care Res. 2007;28:478–481. doi: 10.1097/BCR.0B013E318053d2EA. [PubMed] [CrossRef] [Google Scholar]

231. Pan R, et al. School reintegration of pediatric burn survivors: an integrative literature review. Burns. 2018;44:494–511. doi: 10.1016/j.burns.2017.05.005. [PubMed] [CrossRef] [Google Scholar]

232. Mason SA, et al. Burn center care reduces acute health care utilization after discharge: a population-based analysis of 1,895 survivors of major burn injury. Surgery. 2017;162:891–900. doi: 10.1016/j.surg.2017.05.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

233. Duke JM, et al. Increased admissions for musculoskeletal diseases after burns sustained during childhood and adolescence. Burns. 2015;41:1674–1682. doi: 10.1016/j.burns.2015.08.028. [PubMed] [CrossRef] [Google Scholar]

234. Randall SM, et al. Long-term musculoskeletal morbidity after adult burn injury: a population-based cohort study. BMJ Open. 2015;5:e009395. doi: 10.1136/bmjopen-2015-009395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Polychronopoulou E, Herndon DN, Porter C. The long-term impact of severe burn trauma on musculoskeletal health. J. Burn Care Res. 2018;39:869–880. doi: 10.1093/jbcr/iry035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Duke JM, et al. Diabetes mellitus after injury in burn and non-burned patients: a population based retrospective cohort study. Burns. 2018;44:566–572. doi: 10.1016/j.burns.2017.10.019. [PubMed] [CrossRef] [Google Scholar]

237. Duke JM, Rea S, Boyd JH, Randall SM, Wood FM. Mortality after burn injury in children: a 33-year population-based study. Pediatrics. 2015;135:e903–e910. doi: 10.1542/peds.2014-3140. [PubMed] [CrossRef] [Google Scholar]

238. Parvizi D, et al. BurnCase 3D software validation study: burn size measurement accuracy and inter-rater reliability. Burns. 2016;42:329–335. doi: 10.1016/j.burns.2016.01.008. [PubMed] [CrossRef] [Google Scholar]

239. Yan J, et al. Sepsis criteria versus clinical diagnosis of sepsis in burn patients: a validation of current sepsis scores. Surgery. 2018;164:1241–1245. doi: 10.1016/j.surg.2018.05.053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Chen P, Stanojcic M, Jeschke MG. Septic predictor index: a novel platform to identify thermally injured patients susceptible to sepsis. Surgery. 2018;163:409–414. doi: 10.1016/j.surg.2017.08.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. Finnerty CC, et al. Proteomics improves the prediction of burns mortality: results from regression spline modeling. Clin. Transl. Sci. 2012;5:243–249. doi: 10.1111/j.1752-8062.2012.00412.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Mason SA, et al. Hold the pendulum: rates of acute kidney injury are increased in patients who receive resuscitation volumes less than predicted by the Parkland equation. Ann. Surg. 2016;264:1142–1147. doi: 10.1097/SLA.0000000000001615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Cancio LC, Salinas J, Kramer GC. Protocolized resuscitation of burn patients. Crit. Care Clin. 2016;32:599–610. doi: 10.1016/j.ccc.2016.06.008. [PubMed] [CrossRef] [Google Scholar]

244. Serio-Melvin ML, et al. Burn shock and resuscitation. J. Burn Care Res. 2017;38:e423–e431. doi: 10.1097/BCR.0000000000000417. [PubMed] [CrossRef] [Google Scholar]

245. Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M. Wound coverage technologies in burn care. J. Burn Care Res. 2013;34:612–620. doi: 10.1097/BCR.0b013e31829b0075. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Jeschke MG, et al. Wound coverage technologies in burn care: established techniques. J. Burn Care Res. 2018;39:313–318. [PMC free article] [PubMed] [Google Scholar]

247. Amini-Nik S, et al. Stem cells derived from burned skin - the future of burn care. EBioMedicine. 2018;37:509–520. doi: 10.1016/j.ebiom.2018.10.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

248. Hakimi N, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip. 2018;18:1440–1451. doi: 10.1039/C7LC01236E. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Brannen AL, et al. A randomized prospective trial of hyperbaric oxygen in a referral burn center population. Am. Surg. 1997;63:205–208. [PubMed] [Google Scholar]

250. de Durante G, et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002;165:1271–1274. doi: 10.1164/rccm.2105050. [PubMed] [CrossRef] [Google Scholar]

251. Kearns RD, et al. Guidelines for burn care under austere conditions: introduction to burn disaster, airway and ventilator management, and fluid resuscitation. J. Burn Care Res. 2016;37:e427–e439. doi: 10.1097/BCR.0000000000000304. [PubMed] [CrossRef] [Google Scholar]

252. Cancio LC, et al. Guidelines for burn care under austere conditions: surgical and nonsurgical wound management. J. Burn Care Res. 2017;38:203–214. doi: 10.1097/BCR.0000000000000368. [PubMed] [CrossRef] [Google Scholar]

253. Wetta-Hall R, Jost JC, Jost G, Praheswari Y, Berg-Copas GM. Preparing for burn disasters: evaluation of a continuing education training course for pre-hospital and hospital professionals in Kansas. J. Burn Care Res. 2007;28:97–104. doi: 10.1097/BCR.0B013E31802Cb815. [PubMed] [CrossRef] [Google Scholar]

254. Spiwak R, Lett R, Rwanyuma L, Logsetty S. Examining perception and actual knowledge change among learners in a standardized burn course. Plast. Surg. 2015;23:221–224. doi: 10.1177/229255031502300404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

255. Spiwak R, Lett R, Rwanyuma L, Logsetty S. Creation of a standardized burn course for low income countries: meeting local needs. Burns. 2014;40:1292–1299. doi: 10.1016/j.burns.2014.01.007. [PubMed] [CrossRef] [Google Scholar]

256. Interburns. Improving Quality in Burn Care. interburns.orghttps://interburns.org/training/ (2019).

257. Peck M, Jeng J, Moghazy A. Burn resuscitation in the austere environment. Crit. Care Clin. 2016;32:561–565. doi: 10.1016/j.ccc.2016.06.010. [PubMed] [CrossRef] [Google Scholar]

258. Burmeister DM, et al. Operational advantages of enteral resuscitation following burn injury in resource-poor environments: palatability of commercially available solutions. J. Spec. Oper. Med. 2019;19:76–81. [PubMed] [Google Scholar]

259. Gómez BI, et al. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: evidence from a porcine model. PLoS One. 2018;13:e0195615. doi: 10.1371/journal.pone.0195615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

260. Georgiadis J, Nascimento VB, Donat C, Okereke I, Shoja MM. Dakin’s solution: “One of the most important and far-reaching contributions to the armamentarium of the surgeons” Burns. 2019;45:1509–1517. doi: 10.1016/j.burns.2018.12.001. [PubMed] [CrossRef] [Google Scholar]

261. Hirsch T, et al. Antimicrobial activity of clinically used antiseptics and wound irrigating agents in combination with wound dressings. Plast. Reconstr. Surg. 2011;127:1539–1545. doi: 10.1097/PRS.0b013e318208d00f. [PubMed] [CrossRef] [Google Scholar]

262. US Fire Administration. Choosing and using fire extinguishers. usfa.fema.govhttps://www.usfa.fema.gov/prevention/outreach/extinguishers.html (2017).

263. Szczesny B, et al. Time-dependent and organ-specific changes in mitochondrial function, mitochondrial DNA integrity, oxidative stress and mononuclear cell infiltration in a mouse model of burn injury. PLoS One. 2015;10:e0143730. doi: 10.1371/journal.pone.0143730. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

264. Choudhry, M. A., Gamelli, R. L. & Chaudry, I. H. in Yearbook of Intensive Care and Emergency Medicine 2004 (ed. Vincent, J.-L.) 16–26 (Springer, 2004).

265. Rae L, et al. Differences in resuscitation in morbidly obese burn patients may contribute to high mortality. J. Burn Care Res. 2013;34:507–514. doi: 10.1097/BCR.0b013e3182a2a771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

266. Rossiter ND, Chapman P, Haywood IA. How big is a hand? Burns. 1996;22:230–231. doi: 10.1016/0305-4179(95)00118-2. [PubMed] [CrossRef] [Google Scholar]

267. Jean J. Bioengineered skin: the self-assembly approach. J. Tissue Sci. Eng. 2013 doi: 10.4172/2157-7552.S5-001. [CrossRef] [Google Scholar]

268. Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J. Clin. Aesthetic Dermatol. 2014;7:44–48. [PMC free article] [PubMed] [Google Scholar]

269. Sheridan R. Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin. Plast. Surg. 2009;36:643–651. doi: 10.1016/j.cps.2009.05.010. [PubMed] [CrossRef] [Google Scholar]

270. Takami Y, Yamaguchi R, Ono S, Hyakusoku H. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix. J. Nippon. Med. Sch. 2014;81:356–363. doi: 10.1272/jnms.81.356. [PubMed] [CrossRef] [Google Scholar]

271. Holmes IV JH, et al. A comparative study of the ReCell® device and autologous split-thickness meshed skin graft in the treatment of acute burn injuries. J. Burn Care Res. 2018;39:694–702. doi: 10.1093/jbcr/iry029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

272. Gravante G, et al. A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns. 2007;33:966–972. doi: 10.1016/j.burns.2007.04.011. [PubMed] [CrossRef] [Google Scholar]

273. Moustafa M, et al. Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers. Regen. Med. 2007;2:887–902. doi: 10.2217/17460751.2.6.887. [PubMed] [CrossRef] [Google Scholar]

274. Hernon CA, et al. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen. Med. 2006;1:809–821. doi: 10.2217/17460751.1.6.809. [PubMed] [CrossRef] [Google Scholar]

275. Gerlach JC, et al. Autologous skin cell spray-transplantation for a deep dermal burn patient in an ambulant treatment room setting. Burns. 2011;37:e19–e23. doi: 10.1016/j.burns.2011.01.022. [PubMed] [CrossRef] [Google Scholar]

276. Lee H. Outcomes of sprayed cultured epithelial autografts for full-thickness wounds: a single-centre experience. Burns. 2012;38:931–936. doi: 10.1016/j.burns.2012.01.014. [PubMed] [CrossRef] [Google Scholar]

277. Romanelli M, Dini V, Bertone M, Barbanera S, Brilli C. OASIS wound matrix versus Hyaloskin in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. Int. Wound J. 2007;4:3–7. doi: 10.1111/j.1742-481X.2007.00300.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Hodde JP, Ernst DMJ, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J. Wound Care. 2005;14:23–25. doi: 10.12968/jowc.2005.14.1.26721. [PubMed] [CrossRef] [Google Scholar]

279. Philandrianos C, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38:820–829. doi: 10.1016/j.burns.2012.02.008. [PubMed] [CrossRef] [Google Scholar]

280. Kogan S, Halsey J, Agag RL. Biologics in acute burn injury. Ann. Plast. Surg. 2019;83:26–33. doi: 10.1097/SAP.0000000000001915. [PubMed] [CrossRef] [Google Scholar]

281. Kim JS, Kaminsky AJ, Summitt JB, Thayer WP. New innovations for deep partial-thickness burn treatment with ACell Matristem Matrix. Adv. Wound Care. 2016;5:546–552. doi: 10.1089/wound.2015.0681. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

282. Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 1980;14:65–81. doi: 10.1002/jbm.820140108. [PubMed] [CrossRef] [Google Scholar]

283. Hicks KE, Huynh MN, Jeschke M, Malic C. Dermal regenerative matrix use in burn patients: a systematic review. J. Plast. Reconstr. Aesthetic Surg. 2019;72:1741–1751. doi: 10.1016/j.bjps.2019.07.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

284. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21:243–248. doi: 10.1016/0305-4179(95)93866-I. [PubMed] [CrossRef] [Google Scholar]

285. Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast. Reconstr. Surg. Glob. Open. 2015;3:e284. doi: 10.1097/GOX.0000000000000219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

286. Boa O, et al. Prospective study on the treatment of lower-extremity chronic venous and mixed ulcers using tissue-engineered skin substitute made by the self-assembly approach. Adv. Skin. Wound Care. 2013;26:400–409. doi: 10.1097/01.ASW.0000433102.48268.2a. [PubMed] [CrossRef] [Google Scholar]

287. Zelen CM, et al. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int. Wound J. 2015;12:724–732. doi: 10.1111/iwj.12395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

288. Boyce ST, et al. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 2002;235:269–279. doi: 10.1097/00000658-200202000-00016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

A nurse is providing discharge instructions to a client who has partial thickness burn on the hand

Lund and Browder diagrams for estimating burn size in terms of TBSA.

In adults, the ‘Rule of Nines’ (that is, using multiples of 9) is used to assess the proportion of the total body surface area (TBSA) affected and to help guide immediate treatment decisions, such as amount of fluid resuscitation, that are based on the size of the burn injury. However, owing to different head to body size ratios, the proportion of the TBSA affected in children is estimated differently; the Rule of Nines is inaccurate. Another challenge is the body habitus. For example, the Rule of Nines and the estimate that each hand comprises 1% of the TBSA are inaccurate in patients who have obesity or cachexia265. The body areas are separated by colour and the numbers are percentages of the TBSA and include front and back coverage; for example, ‘32’ in the diagram of the trunk relates to the chest, abdomen and back that make up 32% of the TBSA. The hand, including the palm, fingers and back of the hand, represents 2% of the TBSA and can be a useful tool for quick calculation of the size of a burn — especially irregularly shaped scald burns266.