How does the conduction occur?

where Q˙cond is the conduction heat transfer rate, kt is the thermal conductivity of the material (Table 12.1), A is the cross-sectional area perpendicular to the heat transfer direction, and Δx is the thickness of the plate or wall.

From: Exploring Engineering (Third Edition), 2013

By Mary Gormandy White, M.A. , Staff Writer

How does the conduction occur?

  • illustration infographic conduction

  • VectorMine / iStock / Getty Images Plus

  • Used under Getty Images license

Conduction is the movement of heat or electricity through a material without any perceptible motion of the material. Discover more details about real-life conduction and review some examples of conduction.

Conduction is one of the ways that heat can transfer from one place to another. Conduction occurs when energy is transferred from one atom or object to another. It takes place through either heat or electricity. Conduction can occur in liquid, gaseous or solid objects.

  • For conduction to take place between two objects, they must be touching each other.
  • For conduction to occur between atoms within the same object, they must also be touching (or nearly touching).

When conduction occurs, it doesn't cause the object(s) to move in a way that people can perceive. This is because conduction does not cause materials to be displaced.

Heat conduction and thermal conduction mean the same thing. As molecules heat up, they begin to vibrate, which causes them to transfer kinetic energy to other molecules they come in contact with.

  • You can warm your back muscles with a heating pad. As the pad heats up, it transfers heat to the part of your body that it is in contact with.
  • The heat from a hot liquid makes the cup itself hot. If you grab a cup that has hot coffee, tea or broth in it, the cup itself will be hot and your hands will feel it.
  • If you are cold and someone holds you to warm you, the heat is being conducted from their body to yours.
  • If you leave a metal spoon propped up in a pot, it will become hot from the boiling water inside the pot.
  • Chocolate candy in your hand will eventually melt as heat is conducted from your hand to the chocolate.
  • When ironing a piece of clothing, the iron is hot and the heat is transferred to the clothing.
  • If you stoke a fire in the fireplace with a poker and leave the poker in the fire, the poker will become very hot.
  • A heat exchanger uses a hot fluid to conduct heat to a cooler fluid without the two actually coming into direct contact.
  • If you touch a hot stove, heat will be conducted to your finger and your skin will burn.
  • Sand can conduct heat. This is why walking on the beach on a hot summer day will warm your feet.
  • It's important to protect your dog's paws when walking on hot asphalt or concrete. They conduct heat to your pet's feet just as they would to yours.
  • Light bulbs give off heat. If you touch a light bulb when it is on, your hand will get burned.

There are many additional examples of heat conduction beyond the ones listed above.

Electrical conduction occurs when particles that are electrically charged move through some type of medium to produce electrical energy.

  • The wires in your home conduct electricity and allow lights to come on when you flip the switch.
  • When you turn on your computer or any other electric or battery-operated devices or appliances, electrical conduction is what makes them function.
  • With a landline phone, sound waves are converted into electricity that is conducted over wires to the other person's phone. There, it is converted back to sound waves.
  • Lightning rods are installed on buildings to attract lightning to hit them and conduct their energy down into the ground via attached wires rather than damaging the structure.
  • Hearts have their own naturally occurring electrical conduction system. When a heart beats, its electrical signals cause the heart to beat in an appropriate rhythm.
  • If the electrical system in someone's heart doesn't work properly, the person may need to have a pacemaker installed to simulate conduction.
  • The ions in water cause it to conduct electricity. This is why it is important to avoid swimming during a lightning storm; if lightning hits the water, anyone in it risks electrocution.
  • This also holds true with electrical appliances and water. If a plugged-in blow dryer (or any other electric item) falls into a tub or sink filled with water, do not touch it. The water would conduct the electricity such that touching the device could result in electrocution.
  • When table salt is dissolved in water, it can conduct electricity. That is because the water separates the sodium ions from the chlorine ions apart.

Certain materials work very well as conductors.

  • aluminum
  • brass
  • bronze
  • copper
  • gold
  • graphite
  • iron
  • mercury
  • steel
  • silver

Conduction is one of the three ways that heat can be transferred. It can also be transferred through convection and radiation. While you're discovering examples of conduction, go ahead and learn more about these other mechanisms for heat transfer. Start by exploring some examples of convection. Then, review some examples of radiation in daily life.

How does the conduction occur?
Diagram showing the transfer of thermal energy via conduction. Credit: Boundless

Heat is an interesting form of energy. Not only does it sustain life, make us comfortable and help us prepare our food, but understanding its properties is key to many fields of scientific research. For example, knowing how heat is transferred and the degree to which different materials can exchange thermal energy governs everything from building heaters and understanding seasonal change to sending ships into space.

Heat can only be transferred through three means: conduction, convection and radiation. Of these, conduction is perhaps the most common, and occurs regularly in nature. In short, it is the transfer of heat through physical contact. It occurs when you press your hand onto a window pane, when you place a pot of water on an active element, and when you place an iron in the fire.

This transfer occurs at the molecular level—from one body to another—when heat energy is absorbed by a surface and causes the molecules of that surface to move more quickly. In the process, they bump into their neighbors and transfer the energy to them, a process which continues as long as heat is still being added.

The process of heat conduction depends on four basic factors: the temperature gradient, the cross section of the materials involved, their path length, and the properties of those materials.

A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes in a specific location. Temperature always flows from the hottest to coldest source, due to the fact that cold is nothing but the absence of heat energy. This transfer between bodies continues until the temperature difference decays, and a state known as thermal equilibrium occurs.

Cross-section and path length are also important factors. The greater the size of the material involved in the transfer, the more heat is needed to warm it. Also, the more surface area that is exposed to open air, the greater likelihood for heat loss. So shorter objects with a smaller cross-section are the best means of minimizing the loss of heat energy.

How does the conduction occur?
Heat conduction occurs through any material, represented here by a rectangular bar. The rate at which it is transfers depends in part on the thickness of the material (rep. by A). Credit: Boundless

Last, but certainly not least, is the physical properties of the materials involved. Basically, when it comes to conducting heat, not all substances are created equal. Metals and stone are considered good conductors since they can speedily transfer heat, whereas materials like wood, paper, air, and cloth are poor conductors of heat.

These conductive properties are rated based on a "coefficient" which is measured relative to silver. In this respect, silver has a coefficient of heat conduction of 100, whereas other materials are ranked lower. These include copper (92), iron (11), water (0.12), and wood (0.03). At the opposite end of the spectrum is a perfect vacuum, which is incapable of conducting heat, and is therefore ranked at zero.

Materials that are poor conductors of heat are called insulators. Air, which has a conduction coefficient of .006, is an exceptional insulator because it is capable of being contained within an enclosed space. This is why artificial insulators make use of air compartments, such as double-pane glass windows which are used for cutting heating bills. Basically, they act as buffers against heat loss.

Feather, fur, and natural fibers are all examples of natural insulators. These are materials that allows birds, mammals and human beings to stay warm. Sea otters, for example, live in ocean waters that are often very cold and their luxuriously thick fur keeps them warm. Other sea mammals like sea lions, whales and penguins rely on thick layers of fat (aka. blubber) – a very poor conductor – to prevent heat loss through their skin.

This same logic is applied to insulating homes, buildings, and even spacecraft. In these cases, methods involve either trapped air pockets between walls, fiber-glass (which traps air within it) or high-density foam. Spacecraft are a special case, and use insulation in the form of foam, reinforced carbon composite material, and silica fiber tiles. All of these are poor conductors of heat, and therefore prevent heat from being lost in space and also prevent the extreme temperatures caused by atmospheric reentry from entering the crew cabin.

How does the conduction occur?
Conduction, as demonstrated by heating a metal rod with a flame. Credit: Thomson Higher Education

The laws governing conduction of heat are very similar to Ohm's Law, which governs electrical conduction. In this case, a good conductor is a material that allows electrical current (i.e. electrons) to pass through it without much trouble. An electric insulator, by contrast, is any material whose internal electric charges do not flow freely, and therefore make it very hard to conduct an electric current under the influence of an electric field.

In most cases, materials that are poor conductors of heat are also poor conductors of electricity. For instance, copper is good at conducting both heat and electricity, hence why copper wires are used so widely in the manufacture of electronics. Gold and silver are even better, and where price is not an issue, these materials are used in the construction of electrical circuits as well.

And when one is looking to "ground" a charge (i.e. neutralize it), they send it through a physical connection to the Earth, where the charge is lost. This is common with electrical circuits where exposed metal is a factor, ensuring that people who accidentally come into contact are not electrocuted.

How does the conduction occur?
This view of the nose section of space shuttle Discovery, build of heat-resistance carbon-composites. Credit: NASA

Insulating materials, such as rubber on the soles of shoes, is worn to ensure that people working with sensitive materials or around electrical sources are protected from electrical charges. Other insulating materials like glass, polymers, or porcelain are commonly used on power lines and high-voltage power transmitters to keep power flowing to the circuits (and nothing else!)

In short, conduction comes down to the transfer of heat or the transfer of an electrical charge. Both happen as a result of a substance's ability to allow molecules to transfer energy across them.

Citation: What is heat conduction? (2014, December 9) retrieved 11 December 2022 from https://phys.org/news/2014-12-what-is-heat-conduction.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.