The most accurate methods for assessing and clarifying body composition are those based on

  1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief. 2020;360:1–8.

    Google Scholar 

  2. Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee. American Heart Association Circulation. 1997;96(9):3248–50.

    CAS  PubMed  Google Scholar 

  3. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3(9):565–74.

    PubMed  Article  Google Scholar 

  4. Astrup A, Finer N. Redefining type 2 diabetes: “diabesity” or “obesity dependent diabetes mellitus”? Obesity reviews : an official journal of the International Association for the Study of Obesity. 2000;1(2):57–9.

    CAS  Article  Google Scholar 

  5. Katsiki N, Ntaios G, Vemmos K. Stroke, obesity and gender: A review of the literature. Maturitas. 2011;69(3):239–43.

    PubMed  Article  Google Scholar 

  6. Organization WH. The top 10 causes of death Fact sheet. Geneve; 2020.

  7. Salimi Y, Taghdir M, Sepandi M, Karimi Zarchi A-A. The prevalence of overweight and obesity among Iranian military personnel: a systematic review and meta-analysis. BMC Public Health. 2019;19(1):162.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Duren DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008;2(6):1139–46.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Buss J. Limitations of body mass index to assess body fat. Workplace health & safety. 2014;62(6):264.

    Article  Google Scholar 

  10. Walton C, Lees B, Crook D, Worthington M, Godsland IF, Stevenson JC. Body fat distribution, rather than overall adiposity, influences serum lipids and lipoproteins in healthy men independently of age. Am J Med. 1995;99(5):459–64.

    CAS  PubMed  Article  Google Scholar 

  11. Astrup A, Bügel S. Overfed but undernourished: recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int J Obes. 2019;43(2):219–32.

    Article  Google Scholar 

  12. García OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67(10):559–72.

    PubMed  Article  Google Scholar 

  13. Othman FB, Mohamed H, Sirajudeen KNS, Noh M, Rajab NF. The influence of selenium status on body composition, oxidative DNA damage and total antioxidant capacity in newly diagnosed type 2 diabetes mellitus: A case-control study. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2017;43:106–12.

    Article  CAS  Google Scholar 

  14. Pallavi Panth AN, DiMarco N, Petterborg L. Association between Dietary Iodine Consumption and Body Composition in Caucasian Females between the Ages of 18 to 60: The Pioneer Project. Endocrinol Diabetes Metab J. 2018;2(3):1–8. https://doi.org/10.31038/EDMJ.2018231.

    Article  Google Scholar 

  15. Cunha TA, Vermeulen-Serpa KM, Grilo EC, Leite-Lais L, Brandão-Neto J, Vale SHL. Association between zinc and body composition: An integrative review. J Trace Elem Med Biol. 2022;71: 126940.

    PubMed  Article  Google Scholar 

  16. Jacqmain M, Doucet E, Després JP, Bouchard C, Tremblay A. Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am J Clin Nutr. 2003;77(6):1448–52.

    CAS  PubMed  Article  Google Scholar 

  17. Gröber U, Schmidt J, Kisters K. Magnesium in Prevention and Therapy. Nutrients. 2015;7(9):8199–226.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Al Alawi AM, Majoni SW, Falhammar H. Magnesium and Human Health: Perspectives and Research Directions. International Journal of Endocrinology. 2018;2018:9041694.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Jiang S, Ma X, Li M, Yan S, Zhao H, Pan Y, et al. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. adults using quantile regression analysis NHANES 2007–2014. PeerJ. 2020;8:e9127.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Lu L, Chen C, Yang K, Zhu J, Xun P, Shikany JM, et al. Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur J Nutr. 2020;59(8):3745–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Castellanos-Gutiérrez A, Sánchez-Pimienta TG, Carriquiry A, da Costa THM, Ariza AC. Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J. 2018;17(1):114.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Takaya J, Higashino H, Kobayashi Y. Intracellular magnesium and insulin resistance. Magnes Res. 2004;17(2):126–36.

    CAS  PubMed  Google Scholar 

  23. Inoue I. Lipid metabolism and magnesium. Clin Calcium. 2005;15(11):65–76.

    PubMed  Google Scholar 

  24. Piuri G, Zocchi M, Della Porta M, Ficara V, Manoni M, Zuccotti GV, et al. Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients. 2021;13(2):320.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Maguire D, Talwar D, Shiels PG, McMillan D. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clinical Nutrition ESPEN. 2018;25:8–17.

    PubMed  Article  Google Scholar 

  26. Moslehi N, Vafa M, Sarrafzadeh J, Rahimi-Foroushani A. Does magnesium supplementation improve body composition and muscle strength in middle-aged overweight women? A double-blind, placebo-controlled, randomized clinical trial. Biol Trace Elem Res. 2013;153(1–3):111–8.

    CAS  PubMed  Article  Google Scholar 

  27. Rafiee M, Ghavami A, Rashidian A, Hadi A, Askari G. The effect of magnesium supplementation on anthropometric indices: a systematic review and dose–response meta-analysis of clinical trials. Br J Nutr. 2021;125(6):644–56.

    CAS  PubMed  Article  Google Scholar 

  28. Anjom-Shoae J, Sadeghi O, Hassanzadeh Keshteli A, Afshar H, Esmaillzadeh A, Adibi P. The association between dietary intake of magnesium and psychiatric disorders among Iranian adults: a cross-sectional study. Br J Nutr. 2018;120(6):693–702.

    CAS  PubMed  Article  Google Scholar 

  29. Mendez MA, Popkin BM, Buckland G, Schroder H, Amiano P, Barricarte A, et al. Alternative methods of accounting for underreporting and overreporting when measuring dietary intake-obesity relations. Am J Epidemiol. 2011;173(4):448–58.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    PubMed  Article  Google Scholar 

  31. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.

    PubMed  Article  Google Scholar 

  32. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654–62.

    PubMed  Article  Google Scholar 

  33. Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7(213):42–58.

    Google Scholar 

  34. Haytowitz D, Lemar L, Pehrsson P, Exler J, Patterson K, Thomas R, et al. USDA national nutrient database for standard reference, release 24. US Department of Agriculture: Washington, DC, USA; 2011.

    Google Scholar 

  35. Wellens RI, Roche AF, Khamis HJ, Jackson AS, Pollock ML, Siervogel RM. Relationships between the body mass index and body composition. Obes Res. 1996;4(1):35–44.

    CAS  PubMed  Article  Google Scholar 

  36. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring, Md). 2011;19(5):1083–9.

    PubMed Central  Article  Google Scholar 

  37. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring, Md). 2013;21(11):2264–71.

    Article  Google Scholar 

  38. Rico-Martín S, Calderón-García JF, Sánchez-Rey P, Franco-Antonio C, Martínez Alvarez M, Sánchez Muñoz-Torrero JF. Effectiveness of body roundness index in predicting metabolic syndrome: A systematic review and meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2020;21(7): e13023.

    Article  Google Scholar 

  39. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7(7): e39504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Christakoudi S, Tsilidis KK, Muller DC, Freisling H, Weiderpass E, Overvad K, et al. A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort. Sci Rep. 2020;10(1):14541.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;5:26.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Xia C, Li R, Zhang S, Gong L, Ren W, Wang Z, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035–8.

    CAS  PubMed  Article  Google Scholar 

  43. Rotter I, Rył A, Szylińska A, Pawlukowska W, Lubkowska A, Laszczyńska M. Lipid Accumulation Product (LAP) as an Index of Metabolic and Hormonal Disorders in Aging Men. Exp Clin Endocrinol Diabetes. 2017;125(3):176–82.

    CAS  PubMed  Google Scholar 

  44. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–2.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL. Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinologia y nutricion : organo de la Sociedad Espanola de Endocrinologia y Nutricion. 2014;61(10):533–40.

    Article  Google Scholar 

  46. Beydoun MA, Gary TL, Caballero BH, Lawrence RS, Cheskin LJ, Wang Y. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr. 2008;87(6):1914–25.

    CAS  PubMed  Article  Google Scholar 

  47. He K, Liu K, Daviglus ML, Morris SJ, Loria CM, Van Horn L, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. 2006;113(13):1675–82.

    CAS  PubMed  Article  Google Scholar 

  48. Sebastian RS, Cleveland LE, Goldman JD, Moshfegh AJ. Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. J Am Diet Assoc. 2007;107(8):1322–32.

    CAS  PubMed  Article  Google Scholar 

  49. Razzaque MS. Magnesium: Are We Consuming Enough? Nutrients. 2018;10(12):1863.

    PubMed Central  Article  CAS  Google Scholar 

  50. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Investig. 2017;127(1):1–4.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Morais JBS, Severo JS, Santos LRd, de Sousa Melo SR, de Oliveira Santos R, de Oliveira ARS, et al. Role of Magnesium in Oxidative Stress in Individuals with Obesity. Biological Trace Element Research. 2017;176(1):20–6.

    CAS  PubMed  Article  Google Scholar 

  52. Nielsen FH. Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care. 2014;17(6):525–30.

    CAS  PubMed  Article  Google Scholar 

  53. Lobionda S, Sittipo P, Kwon HY, Lee YK. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms. 2019;7(8):271.

    CAS  PubMed Central  Article  Google Scholar 

  54. Drewnowski A. The Real Contribution of Added Sugars and Fats to Obesity. Epidemiol Rev. 2007;29:160–71.

    PubMed  Article  Google Scholar 

  55. Blaszczyk U, Duda-Chodak A. Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig. 2013;64(3):165–71.

    CAS  PubMed  Google Scholar 

  56. Costello R, Wallace TC, Rosanoff A. Magnesium. Adv Nutr. 2016;7(1):199–201.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Cazzola R, Della Porta M, Manoni M, Iotti S, Pinotti L, Maier JA. Going to the roots of reduced magnesium dietary intake: A tradeoff between climate changes and sources. Heliyon. 2020;6(11): e05390.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. REPRODUCIBILITY AND VALIDITY OF A SEMIQUANTITATIVE FOOD FREQUENCY QUESTIONNAIRE. Am J Epidemiol. 1985;122(1):51–65.

    CAS  PubMed  Article  Google Scholar 


Page 2

  Total (n = 778) Men (n = 232) Women (n = 546) p- value*
Age 44.9 ± 10.6 45.7 ± 9.73 44.6 ± 11.0 0.22
Education     0.02
  Under diploma 284 (36.5%) 88 (38%) 194 (35.5%)  
  Diploma and higher 494 (63.5%) 144 (62%) 352 (64.5%)  
Smoking status      < 0.001
  Never or former smoker 739 (95%) 204 (88%) 535 (98%)  
  Current smoker 39 (5%) 28 (12%) 11 (2%)  
Physical activity     0.32
  Low 490 (63%) 138 (59.5%) 352 (64.5%)  
  Moderate and higher 288 (37%) 94 (40.5%) 194 (35.5%)  
Occupation      < 0.001
  Employee 189 (24.3%) 91 (39.2%) 98 (18%)  
  Housekeeper 449 (57.7%) 70 (30.2%) 379 (69.4%)  
  Retired 116 (14.9%) 69 (29.7%) 47 (8.6%)  
  Unemployed 24 (3.1%) 2 (0.9%) 22 (4%)  
Marital status      < 0.001
  Single 80 (10.3%) 19 (8.2%) 61 (11.3%)  
  Married 635 (81.6%) 210 (90.5%) 425 (77.9%)  
  Divorced 63 (8.1%) 3 (1.3%) 60 (11%)  
Energy 2291 ± 737 2441 ± 682 2228 ± 751  < 0.001
  Total Mg intake (mg/day) 272 ± 122 294 ± 140 262 ± 112  < 0.001
  Magnesium intake/ 1000 kcal 125 ± 58.9 131 ± 76.2 123 ± 49.6 0.10

  1. Values are mean ± standard deviation for continuous variables and quantity and percent for categorical variables
  2. The p values resulted from the analysis of one-way analysis of variance for continuous variables and χ2 test for categorical variables
  3. *The p < 0.05 is significant