What describes the first law of thermodynamics?

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

The laws of thermodynamics are deceptively simple to state, but they are far-reaching in their consequences. The first law asserts that if heat is recognized as a form of energy, then the total energy of a system plus its surroundings is conserved; in other words, the total energy of the universe remains constant.

The first law is put into action by considering the flow of energy across the boundary separating a system from its surroundings. Consider the classic example of a gas enclosed in a cylinder with a movable piston. The walls of the cylinder act as the boundary separating the gas inside from the world outside, and the movable piston provides a mechanism for the gas to do work by expanding against the force holding the piston (assumed frictionless) in place. If the gas does work W as it expands, and/or absorbs heat Q from its surroundings through the walls of the cylinder, then this corresponds to a net flow of energy W − Q across the boundary to the surroundings. In order to conserve the total energy U, there must be a counterbalancing change ΔU = Q − W (1) in the internal energy of the gas. The first law provides a kind of strict energy accounting system in which the change in the energy account (ΔU) equals the difference between deposits (Q) and withdrawals (W).

There is an important distinction between the quantity ΔU and the related energy quantities Q and W. Since the internal energy U is characterized entirely by the quantities (or parameters) that uniquely determine the state of the system at equilibrium, it is said to be a state function such that any change in energy is determined entirely by the initial (i) and final (f) states of the system: ΔU = Uf − Ui. However, Q and W are not state functions. Just as in the example of a bursting balloon, the gas inside may do no work at all in reaching its final expanded state, or it could do maximum work by expanding inside a cylinder with a movable piston to reach the same final state. All that is required is that the change in energy (ΔU) remain the same. By analogy, the same change in one’s bank account could be achieved by many different combinations of deposits and withdrawals. Thus, Q and W are not state functions, because their values depend on the particular process (or path) connecting the same initial and final states. Just as it is more meaningful to speak of the balance in one’s bank account than its deposit or withdrawal content, it is only meaningful to speak of the internal energy of a system and not its heat or work content.

From a formal mathematical point of view, the incremental change dU in the internal energy is an exact differential (see differential equation), while the corresponding incremental changes d′Q and d′W in heat and work are not, because the definite integrals of these quantities are path-dependent. These concepts can be used to great advantage in a precise mathematical formulation of thermodynamics (see below Thermodynamic properties and relations).

What describes the first law of thermodynamics?

Science: Fact or Fiction?

Do you get fired up about physics? Giddy about geology? Sort out science fact from fiction with these questions.

The classic example of a heat engine is a steam engine, although all modern engines follow the same principles. Steam engines operate in a cyclic fashion, with the piston moving up and down once for each cycle. Hot high-pressure steam is admitted to the cylinder in the first half of each cycle, and then it is allowed to escape again in the second half. The overall effect is to take heat Q1 generated by burning a fuel to make steam, convert part of it to do work, and exhaust the remaining heat Q2 to the environment at a lower temperature. The net heat energy absorbed is then Q = Q1 − Q2. Since the engine returns to its initial state, its internal energy U does not change (ΔU = 0). Thus, by the first law of thermodynamics, the work done for each complete cycle must be W = Q1 − Q2. In other words, the work done for each complete cycle is just the difference between the heat Q1 absorbed by the engine at a high temperature and the heat Q2 exhausted at a lower temperature. The power of thermodynamics is that this conclusion is completely independent of the detailed working mechanism of the engine. It relies only on the overall conservation of energy, with heat regarded as a form of energy.

In order to save money on fuel and avoid contaminating the environment with waste heat, engines are designed to maximize the conversion of absorbed heat Q1 into useful work and to minimize the waste heat Q2. The Carnot efficiency (η) of an engine is defined as the ratio W/Q1—i.e., the fraction of Q1 that is converted into work. Since W = Q1 − Q2, the efficiency also can be expressed in the form

What describes the first law of thermodynamics?
(2)

If there were no waste heat at all, then Q2 = 0 and η = 1, corresponding to 100 percent efficiency. While reducing friction in an engine decreases waste heat, it can never be eliminated; therefore, there is a limit on how small Q2 can be and thus on how large the efficiency can be. This limitation is a fundamental law of nature—in fact, the second law of thermodynamics (see below).

The first law of thermodynamics tells us the amount of energy in the universe is constant and can neither be destroyed nor created.

The evolution of the universe is therefore about a constant transformation of energy from one form to another. But no matter how many stars and planets the universe creates, how many civilizations spring up into existence on these planets, there will always be the same amount of energy as there was a second after the Big Bang.

Energy transformation is what makes our world work. Humans and animals transform the chemical energy of the food they eat into the kinetic energy of their motion and action and the energy of the chemical processes in their cells. Green plants absorb energy from the sun and turn it into chemical energy in the form of oxygen and sugars that build up their tissues — in a process known as photosynthesis. Solar power plants use the same sunlight to produce electricity. The sun that keeps us all alive burns hydrogen in its core to produce the light and heat we need, dissipating its energy slowly and gradually into the surrounding space. 

Related: Phantom energy and dark gravity: Explaining the dark side of the universe

History of the first law of thermodynamics

The first law of thermodynamics, however, did not emerge from the study of the universe, but from efforts of 17th and 18th-century scientists to understand the nature of heat, according to physicist Stephen Wolfram (opens in new tab). Various ideas were floated, including that heat might be a fluid-like substance or a result of microscopic particles that make up the matter that we see. By the early 19th century, scientists settled on the understanding that heat is a form of energy. 

At that time, the steam engine (opens in new tab) was a hot new technology, relying on heat to transform water into steam that could then set into motion complex mechanical contraptions capable of performing all sorts of tasks, from propelling locomotives to powering factory equipment. Many gifted brains of the era, therefore, busied themselves with the question of how to make this heat-reliant technology more efficient.

The first person to lay a foundation to what would later become the first law of thermodynamics was German physicist Rudolf Clausius, according to St. Andrews University. (opens in new tab) In 1850, Clausius published a paper that would make him famous. The name of the paper is a bit of a mouthful: "On the Moving Force of Heat and the Laws of Heat which may be Deduced Therefrom."

In this paper, Clausius stated that "in all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."

The steam engine and the first law of thermodynamics

But what does Clausius’ statement mean exactly? Let's have a look at the good old steam engine.

A steam engine consists of a chamber with a movable piston. The chamber may contain water or some gas. When the chamber is heated up using an external source of heat, the gas inside expands (the water turns into steam), the increasing heat causes more expansion of the gas, which then causes the piston to move. The piston on the outside of the engine then produces useful work (such as setting a locomotive's wheels in motion). 

In reverse, by applying an external force on the piston, one can compress the gas inside, which would cause it to heat up. In both cases, the amount of heat either used or generated would be equal to the amount of work applied or delivered. The total energy of the engine and its surroundings will remain constant.

The first law of thermodynamics can be captured by the following equation: ΔU = Q — W, where ΔU is the change in the internal energy, Q is the heat added to the system, and W is the work done by the system.

The total energy of the system is equal to the heat supplied minus the amount of work performed. Work and heat are the processes that add or subtract energy. 

Thermodynamics and the role of heat

The discipline that sprung up from the works of Clausius and other physicists of this era, including Britain's William Thomson (later known as the first Baron Kelvin) and France's Sadi Carnot, became known as thermodynamics. Heat plays a central role in thermodynamics, acting as the force that transforms energy from its raw form (think about coal, for example) into actual mechanical work (the movement of a locomotive). 

Thermodynamics studies not just the relationship between heat and mechanical work, but also the role of temperature, volume and pressure in the energy exchange. 

A thermodynamic system has its enthalpy, which is the sum of its internal energy combined with the effects of its pressure and volume, according to NASA (opens in new tab).

Entropy (opens in new tab) is the measure of the system's ability to perform work, based on its orderliness. Essentially, systems differ in the amount of work they can perform per unit of thermal energy depending on how organized they are. 

The so-called Helmholtz free energy of a thermodynamic system describes how much "useful" work a closed thermodynamic system can produce at a constant temperature and volume. 

The Gibbs free energy, on the other hand, describes the maximum reversible work that may be performed by a thermodynamic system at a constant temperature and pressure. 

These four qualities plus energy are used to describe properties of all thermodynamic systems. 

Thermodynamic systems

What describes the first law of thermodynamics?

Three types of systems exist in thermodynamics. (Image credit: Getty images)

There are three types of systems in thermodynamics: closed, isolated and open.

Isolated systems essentially do not exist. The only truly isolated system being the universe itself. 

Closed systems intend to be as much isolated from their surroundings as possible and only exchange energy, but not matter, with their surroundings. A steam engine would be a closed system, but so would be a cooling thermal flask with tea or a white dwarf star gradually losing heat to the vacuum of space.

All living organisms are open systems, exchanging both energy (heat) and matter (food, perspiration, air) with their environment.

Additional resources

Read more about the first law of thermodynamics on our sister website Live Science. Or watch this fun video by the Royal Institution. Explore all three laws of thermodynamics with the educational website Lumen Learning. 

Bibliography

Smith, C.W, William Thomson and the Creation of Thermodynamics: 1840-1855, History of Exact Sciences, Springer, 1977
https://www.jstor.org/stable/41133471

Hareesh, T. et al., First law of thermodynamics and emergence of cosmic space in a non-flat universe, Journal of Cosmology and Astroparticle Physics, December 2019 https://iopscience.iop.org/article/10.1088/1475-7516/2019/12/024

Zohuri, B., First Law of Thermodynamics, Physical Chemistry, 2017 https://www.sciencedirect.com/topics/chemistry/first-law-of-thermodynamics

Britannica, The first law of thermodynamics https://www.britannica.com/science/thermodynamics/The-second-law-of-thermodynamics

Follow Tereza Pultarova on Twitter @TerezaPultarova. Follow us on Twitter @Spacedotcom and on Facebook.