What evolutionary advantage does compartmentalization of core metabolic processes offer eukaryotes ?\?

1. Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U. S. A. 1990 Jun;87(12):4576–4579. [PMC free article] [PubMed] [Google Scholar]

2. Martin W., Koonin E.V. A positive definition of prokaryotes. Nature. 2006 Aug 24;442(7105):868. [PubMed] [Google Scholar]

3. Bazylinski D.A., Frankel R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004 Mar;2(3):217–230. [PubMed] [Google Scholar]

4. Nickelsen J., Rengstl B., Stengel A., Schottkowski M., Soll J., Ankele E. Biogenesis of the cyanobacterial thylakoid membrane system–an update. FEMS Microbiol. Lett. 2011 Feb;315(1):1–5. [PubMed] [Google Scholar]

5. Santarella-Mellwig R., Pruggnaller S., Roos N., Mattaj I.W., Devos D.P. Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol. 2013;11(5):e1001565. [PMC free article] [PubMed] [Google Scholar]

6. Koonin E.V. Darwinian evolution in the light of genomics. Nucleic Acids Res. 2009 Mar;37(4):1011–1034. [PMC free article] [PubMed] [Google Scholar]

7. Mereschkowsky C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Cent. 1905;25:593–604. [Google Scholar]

8. Wallin I.E. Bailliere, Tindall and Cox; London: 1927. Symbionticism and the Origin of Species; p. 171. [Google Scholar]

9. Sagan L. On the origin of mitosing cells. J. Theor. Biol. 1967 Mar;14(3):255–274. [PubMed] [Google Scholar]

10. Gray M.W., Doolittle W.F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 1982 Mar 1;46(1):1–42. [PMC free article] [PubMed] [Google Scholar]

11. Gray M.W., Burger G., Lang B.F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. [PubMed] [Google Scholar]

12. Wier A.M., Sacchi L., Dolan M.F., Bandi C., Macallister J., Margulis L. Spirochete attachment ultrastructure: implications for the origin and evolution of cilia. Biol. Bull. 2010 Feb;218(1):25–35. [PubMed] [Google Scholar]

13. Martin W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Opin. Microbiol. 2005 Dec;8(6):630–637. [PubMed] [Google Scholar]

14. Wickstead B., Gull K. The evolution of the cytoskeleton. J. Cell. Biol. 2011 Aug 22;194(4):513–525. [PMC free article] [PubMed] [Google Scholar]

15. Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998 Mar 5;392(6671):37–41. [PubMed] [Google Scholar]

16. Gabaldón T. Peroxisome diversity and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010 Mar 12;365(1541):765–773. [PMC free article] [PubMed] [Google Scholar]

17. De Duve C. Evolution of the Peroxisome. Ann. N. Y. Acad. Sci. 1969;168(2):369–381. [PubMed] [Google Scholar]

18. Gabaldón T., Capella-Gutiérrez S. Lack of phylogenetic support for a supposed actinobacterial origin of peroxisomes. Gene. 2010 Oct 1;465(1–2):61–65. [PubMed] [Google Scholar]

19. Gabaldón T., Snel B., van Zimmeren F., Hemrika W., Tabak H., Huynen M.A. Origin and evolution of the peroxisomal proteome. Biol. Direct. 2006;1:8. [PMC free article] [PubMed] [Google Scholar]

20. Schlüter A., Fourcade S., Ripp R., Mandel J.L., Poch O., Pujol A. The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol. Biol. Evol. 2006 Apr;23(4):838–845. [PubMed] [Google Scholar]

21. Hoepfner D., Schildknegt D., Braakman I., Philippsen P., Tabak H.F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell. 2005 Jul 15;122(1):85–95. [PubMed] [Google Scholar]

22. Gabaldón T. A metabolic scenario for the evolutionary origin of peroxisomes from the endomembranous system. Cell. Mol. Life Sci. CMLS. 2014 Jul;71(13):2373–2376. [PMC free article] [PubMed] [Google Scholar]

23. Gabaldón T. Evolutionary considerations on the origin of peroxisomes from the endoplasmic reticulum, and their relationships with mitochondria. Cell. Mol. Life Sci. CMLS. 2014 Jul;71(13):2379–2382. [PMC free article] [PubMed] [Google Scholar]

24. Speijer D. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH2/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays News Rev. Mol. Cell. Dev. Biol. 2011 Feb;33(2):88–94. [PubMed] [Google Scholar]

25. Turner B.M. Defining an epigenetic code. Nat. Cell. Biol. 2007 Jan;9(1):2–6. [PubMed] [Google Scholar]

26. Bolte K., Gruenheit N., Felsner G., Sommer M.S., Maier U.-G., Hempel F. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. BioEssays News Rev. Mol. Cell. Dev. Biol. 2011 May;33(5):368–376. [PubMed] [Google Scholar]

27. Martin W. Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos. Trans. R. Soc. Lond B Biol. Sci. 2010 Mar 12;365(1541):847–855. [PMC free article] [PubMed] [Google Scholar]

28. Andersen J.S., Mann M. Organellar proteomics: turning inventories into insights. EMBO Rep. 2006 Sep;7(9):874–879. [PMC free article] [PubMed] [Google Scholar]

29. Forner F., Foster L.J., Campanaro S., Valle G., Mann M. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell. Proteomics MCP. 2006 Apr;5(4):608–619. [PubMed] [Google Scholar]

30. Taylor S.W., Fahy E., Ghosh S.S. Global organellar proteomics. Trends Biotechnol. 2003 Feb;21(2):82–88. [PubMed] [Google Scholar]

31. Gabaldón T., Huynen M.A. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput. Biol. 2007 Nov;3(11):e219. [PMC free article] [PubMed] [Google Scholar]

32. Danpure C.J. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. BioEssays News Rev. Mol. Cell. Dev. Biol. 1997 Apr;19(4):317–326. [PubMed] [Google Scholar]

33. Danpure C.J. The molecular basis of alanine: glyoxylate aminotransferase mistargeting: the most common single cause of primary hyperoxaluria type 1. J. Nephrol. 1998 Apr;11(Suppl. 1):8–12. [PubMed] [Google Scholar]

34. Takayama T., Fujita K., Suzuki K., Sakaguchi M., Fujie M., Nagai E. Control of oxalate formation from L-hydroxyproline in liver mitochondria. J. Am. Soc. Nephrol. JASN. 2003 Apr;14(4):939–946. [PubMed] [Google Scholar]

35. Gabaldón T., Koonin E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013 May;14(5):360–366. [PMC free article] [PubMed] [Google Scholar]

36. Huerta-Cepas J., Capella-Gutiérrez S., Pryszcz L.P., Marcet-Houben M., Gabaldón T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 2014 Jan;42(Database issue):D897–D902. [PMC free article] [PubMed] [Google Scholar]

37. Huntley R.P., Sawford T., Mutowo-Meullenet P., Shypitsyna A., Bonilla C., Martin M.J. The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res. 2014 Nov 6;43(Database issue):D1057–D1063. [PMC free article] [PubMed] [Google Scholar]

38. Birdsey G.M., Lewin J., Cunningham A.A., Bruford M.W., Danpure C.J. Differential enzyme targeting as an evolutionary adaptation to herbivory in carnivora. Mol. Biol. Evol. 2004 Apr;21(4):632–646. [PubMed] [Google Scholar]

39. Huerta-Cepas J., Dopazo J., Gabaldón T. ETE: a python environment for tree exploration. BMC Bioinforma. 2010;11:24. [PMC free article] [PubMed] [Google Scholar]

40. Cavalier-Smith T. Origin of the cell nucleus. BioEssays News Rev. Mol. Cell. Dev. Biol. 1988 Sep;9(2–3):72–78. [PubMed] [Google Scholar]

41. Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol. Direct. 2010;5:7. [PMC free article] [PubMed] [Google Scholar]

42. Gupta R.S., Golding G.B. The origin of the eukaryotic cell. Trends Biochem. Sci. 1996 May;21(5):166–171. [PubMed] [Google Scholar]

43. Horiike T., Hamada K., Kanaya S., Shinozawa T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in bacteria is revealed by homology-hit analysis. Nat. Cell. Biol. 2001 Feb;3(2):210–214. [PubMed] [Google Scholar]

44. Lake J.A., Rivera M.C. Was the nucleus the first endosymbiont? Proc. Natl. Acad. Sci. U. S. A. 1994 Apr 12;91(8):2880–2881. [PMC free article] [PubMed] [Google Scholar]

45. Margulis L. 1993. Serial Endosymbiosis Theory; pp. 1–18. (Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons). [Google Scholar]

46. Gray M.W. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 1992;141:233–357. [PubMed] [Google Scholar]

47. Margulis L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl. Acad. Sci. U. S. A. 1996 Feb 6;93(3):1071–1076. [PMC free article] [PubMed] [Google Scholar]

48. Margulis L., Dolan M.F., Guerrero R. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Natl. Acad. Sci. U. S. A. 2000 Jun 20;97(13):6954–6959. [PMC free article] [PubMed] [Google Scholar]

49. Martin W. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc. R. Soc. B Biol. Sci. 1999 Jul 7;266(1426):1387. [Google Scholar]

50. Moreira D., Lopez-Garcia P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 1998 Nov;47(5):517–530. [PubMed] [Google Scholar]

51. Raff R.A., Mahler H.R. The non symbiotic origin of mitochondria. Science. 1972 Aug 18;177(4049):575–582. [PubMed] [Google Scholar]

52. Gabaldón T., Huynen M.A. Shaping the mitochondrial proteome. Biochim. Biophys. Acta. 2004 Dec 6;1659(2–3):212–220. [PubMed] [Google Scholar]

53. Bodył A., Mackiewicz P., Stiller J.W. Early steps in plastid evolution: current ideas and controversies. BioEssays News Rev. Mol. Cell. Dev. Biol. 2009 Nov;31(11):1219–1232. [PubMed] [Google Scholar]

54. Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000 Apr;5(4):174–182. [PubMed] [Google Scholar]

55. Duhita N., Le H.A.T., Satoshi S., Kazuo H., Daisuke M., Takao S. The origin of peroxisomes: the possibility of an actinobacterial symbiosis. Gene. 2010 Jan 15;450(1–2):18–24. [PubMed] [Google Scholar]

Page 2

Main hypotheses regarding the exogenous or endogenous origin of the different organelles (See Fig. 1).

OrganelleAutogenous originSymbiotic/Endosymbiotic origin

Nucleus[2], [13], [15], [40], [41][42], [43], [44]
Cytoskeleton[14], [45][46], [47], [48]
Endomembrane system[15], [49][42], [50]
Mitochondria[51][9], [45], [46], [52]
Plastids[46], [53], [54]
Peroxisomes[16], [19], [20][17], [55]