What is the analytical tool that defines a combination of inputs that yields the same output?

1. Juran JM. Juran on quality by design: the new steps for planning quality into goods and services. New York: The Free Press; 1992. [Google Scholar]

2. Woodcock J. The concept of pharmaceutical quality. Am Pharm Rev 2004; 1–3.

3. U. S. Food and Drug Administration. Guidance for Industry: Q8 (2) Pharmaceutical Development. 2009

4. U. S. Food and Drug Administration. Guidance for Industry: Q9 Quality Risk Management. 2006.

5. U. S. Food and Drug Administration. Guidance for Industry: Q10 pharmaceutical quality system. 2009.

6. U. S. Food and Drug Administration. Guidance for Industry: Q8, Q9, and Q10 questions and answers. 2011.

7. ICH Quality Implementation Working Group. Points to consider. ICH-endorsed guide for ICH Q8/Q9/Q10 implementation. 2011.

8. U. S. Food and Drug Administration. Guidance for Industry: Q11 development and manufacture of drug substance. 2012.

9. U. S. Food and Drug Administration. FDA-EMA parallel assessment of Quality-By-Design elements of marketing applications. http://www.fda.gov/Drugs/DrugSafety/ucm365524.htm. Accessed 16 Nov 2013

10. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25:781–91. doi: 10.1007/s11095-007-9511-1. [PubMed] [CrossRef] [Google Scholar]

11. Lionberger R, Lee S, Lee L, Raw A, Yu LX. Quality by design: concepts for ANDAs. AAPS J. 2008;10:268–76. doi: 10.1208/s12248-008-9026-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Raw AS, Lionberger R, Yu LX. Pharmaceutical equivalence by design for generic drugs: modified-release products. Pharm Res. 2011;28:1445–53. doi: 10.1007/s11095-011-0397-6. [PubMed] [CrossRef] [Google Scholar]

13. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27:26–34. doi: 10.1038/nbt0109-26. [PubMed] [CrossRef] [Google Scholar]

14. U. S. Food and Drug Administration. Guidance for Industry: tablet scoring: nomenclature, labeling, and data for evaluation. 2013.

15. U. S. Food and Drug Administration. Guidance for Industry: Size of Beads in Drug Products Labeled for Sprinkle. January, 2011.

16. U. S. Food and Drug Administration. Summary Minutes of the Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. July 26, 2011. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommitteeforPharmaceuticalScienceandClinicalPharmacology/UCM272111.pdf. Accessed 13 Aug 2013.

17. U. S. Food and Drug Administration. Guidance for industry: immediate release solid oral dosage forms scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. 1995.

18. U. S. Food and Drug Administration. Guidance for industry: modified release solid oral dosage forms scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. 1997.

19. U. S. Food and Drug Administration. Guidance for industry: CMC postapproval manufacturing changes to be documented in annual reports. 2014.

20. U. S. Food and Drug Administration. Quality by design for ANDs: an example for immediate-release dosage forms. 2012. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/AbbreviatedNewDrugApplicationANDAGenerics/UCM304305.pdf. Accessed 16 Nov 2013.

21. U. S. Food and Drug Administration. Quality by design for ANDs: an example for modified-release dosage forms. 2011. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/AbbreviatedNewDrugApplicationANDAGenerics/UCM304305.pdf. Accessed 16 Nov 2013.

22. CMC Biotech Working Group. A Mab: A case study in bioprocess development. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=8&ved=0CF8QFjAH&url=http%3A%2F%2Fwww.ispe.org%2Fpqli%2Fa-mab-case-study-version2.1&ei=f6qIUpXqKuLlsATlioHgDA&usg=AFQjCNH9JB17H4gssCd489dlOwV4xoAmDQ. Accessed 16 Nov 2013.

23. USP 34—NF 29 (United States Pharmacopeial Convention). Chapter 1078. Good manufacturing practice for bulk pharmaceutical excipients. Rockville, MD: USP; 2011, pp. 1415–1420

24. USP 34—NF 29 (United States Pharmacopeial Convention). USP and NF Excipients, Listed by Category. Rockville, MD: USP; 2011, pp. 583–595.

25. U. S. Food and Drug Administration. Inactive Ingredient Search for Approved Drug Products. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm, Accessed 13 Aug 2013.

26. Nazzal S, Nutan M, Palamakula A, Shah R, Zaghloul AA, Khan MA. Optimization of a self-nanoemulsified tablet dosage form of ubiquinone using response surface methodology: effect of formulation ingredients. Int J Pharm. 2002;240:103–14. doi: 10.1016/S0378-5173(02)00130-8. [PubMed] [CrossRef] [Google Scholar]

27. Awotwe-Otoo D, Agarabi C, Wu GK, Casey E, Read E, Lute S, et al. Quality by design: impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int J Pharm. 2012;438(1–2):167–75. doi: 10.1016/j.ijpharm.2012.08.033. [PubMed] [CrossRef] [Google Scholar]

28. U.S. Food and Drug Administration CDER. Guidance for industry: PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. 2004.

29. Glodek M, Liebowitz S, McCarthy R, McNally G, Oksanen C, Schultz T, et al. Process robustness—a PQRI white paper. Pharm Eng. 2006;26:1–11. [Google Scholar]

30. NIST/SEMATECH e-Handbook of Statistical Methods. What is process capability? http://www.itl.nist.gov/div898/handbook/pmc/section1/pmc16.htm. Accessed on 13 Aug 2013.

31. ASTM E2281—08a (2012)e1 Standard practice for process and measurement capability indices. http://www.astm.org/Standards/E2281.htm. Accessed 13 Aug 2013.

32. De Feo JA, Barnard W. JURAN Institute's six sigma breakthrough and beyond—quality performance breakthrough methods. India: Tata McGraw-Hill Publishing Company Limited; 2005. [Google Scholar]

33. Wu H, Khan MA. Quality-by-design (QbD): an integrated approach for evaluation of powder blending process kinetics and determination of powder blending end-point. J Pharm Sci. 2009;98(8):2784–98. doi: 10.1002/jps.21646. [PubMed] [CrossRef] [Google Scholar]

34. Rahman Z, Siddiqui A, Khan MA. Assessing the impact of nimodipine devitrification in the ternary cosolvent system through quality by design approach. Int J Pharm. 2013;455(1–2):113–23. doi: 10.1016/j.ijpharm.2013.07.049. [PubMed] [CrossRef] [Google Scholar]

35. Rahman Z, Siddiqui A, Khan MA. Orally disintegrating tablet of novel salt of antiepileptic drug: formulation strategy and evaluation. Eur J Pharm Biopharm. 2013;85:1300–9. doi: 10.1016/j.ejpb.2013.06.006. [PubMed] [CrossRef] [Google Scholar]

36. Zidan AS, Sammour OA, Hammad MA, Megrab NA, Habib MJ, Khan MA. Quality by design: understanding the formulation variables of a cyclosporine, a self-nanoemulsified drug delivery systems by Box-Behnken design and desirability function. Int J Pharm. 2007;332(1–2):55–63. doi: 10.1016/j.ijpharm.2006.09.060. [PubMed] [CrossRef] [Google Scholar]

37. Xu X, Khan MA, Burgess DJ. A Quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int J Pharm. 2012;423(2):543–53. doi: 10.1016/j.ijpharm.2011.11.036. [PubMed] [CrossRef] [Google Scholar]

38. Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA, et al. Development and evaluation of paclitaxel nanoparticles using a quality-by-design (QbD) approach. J Pharm Sci. 2013;102(10):3748–61. doi: 10.1002/jps.23686. [PubMed] [CrossRef] [Google Scholar]

39. Rahman Z, Khan MA. Hunter screening design to understand the product variability of solid dispersion formulation of a peptide antibiotic. Int J Pharm. 2013;456(2):572–82. doi: 10.1016/j.ijpharm.2013.07.062. [PubMed] [CrossRef] [Google Scholar]

40. Yu LX, Lionberger RA, Raw AS, D'Costa R, Wu H, Hussain AS. Application of process analytical technology to crystallization process. Adv Drug Deliv Rev. 2004;56(3):349–69. doi: 10.1016/j.addr.2003.10.012. [PubMed] [CrossRef] [Google Scholar]

41. Wu H, Khan MA. Quality-by-design (QbD): an integrated multivariate approach for the component quantification in powder blends. Int J Pharm. 2009;372(1–2):39–48. doi: 10.1016/j.ijpharm.2009.01.002. [PubMed] [CrossRef] [Google Scholar]

42. Wu H, Khan MA. Quality-by-design (QbD): an integrated process analytical technology (pat) approach to determine the nucleation and growth mechanisms during a dynamic pharmaceutical co-precipitation process. J Pharm Sci. 2011;100(5):1969–86. doi: 10.1002/jps.22430. [PubMed] [CrossRef] [Google Scholar]

43. Rahman Z, Siddiqui A, Khan MA. Characterization of a nonribosomal peptide antibiotic solid dispersion formulation by process analytical technologies sensors. J Pharm Sci. 2013;102(12):4337–46. doi: 10.1002/jps.23740. [PubMed] [CrossRef] [Google Scholar]

44. Xu X, Siddiqui A, Khan MA. Focused beam reflectance measurement to monitor nimodipine precipitation process. Int J Pharm. 2013;456(2):353–6. doi: 10.1016/j.ijpharm.2013.08.083. [PubMed] [CrossRef] [Google Scholar]


Page 2

Typical Input Material Attributes, Process Parameters, and Quality Attributes of Pharmaceutical Unit Operations

Pharmaceutical unit operation
Input material attributesProcess parametersQuality attributes
Blending/mixing
 • Particle size • Particle size distribution • Fines/oversize • Particle shape • Bulk/tapped/true density • Cohesive/adhesive properties • Electrostatic properties

 • Moisture content

 • Type and geometry of mixer • Mixer load level • Order of addition • Number of revolutions (time and speed) • Agitating bar (on/off pattern) • Discharge method • Holding time

 • Environment temperature and RH

• Blend uniformity• Potency• Particle size• Particle size distribution• Bulk/tapped/true density• Moisture content• Flow properties• Cohesive/adhesive properties• Powder segregation

• Electrostatic properties

Size reduction/comminution
 • Particle/granule size • Particle/granule size distribution • Fines • Particle/granule shape • Bulk/tapped/true density • Adhesive properties • Electrostatic properties • Hardness/plasticity • Viscoelasticity • Brittleness • Elasticity • Solid form/polymorph • Moisture content

 • Granule porosity/density

Ribbon milling • Ribbon dimensions • Ribbon density

 • Ribbon porosity/solid fraction

Impact/cutting/screening mills • Mill type • Speed • Blade configuration, type, orientation • Screen size and type • Feeding rateFluid energy mill • Number of grinding nozzles • Feed rate • Nozzle pressure • ClassifierGranule/ribbon milling • Mill type • Speed • Blade configuration, type, orientation • Screen size and type

 • Feeding rate

• Particle/granule size• Particle/granule size distribution• Particle/granule shape

• Particle/granule shape factor (e.g., aspect ratio)

• Particle/granule density/Porosity• Bulk/tapped/true density• Flow properties• API polymorphic form• API crystalline morphology• Cohesive/adhesive properties• Electrostatic properties• Hardness/Plasticity• Viscoelasticity• Brittleness

• Elasticity

Wet granulation
 • Particle size distribution • Fines/Oversize • Particle shape • Bulk/tapped/true density • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Viscoelasticity • Brittleness • Elasticity • Solid form/polymorph

 • Moisture content

High/low shear granulation • Type of granulator (High/low shear, top/bottom drive) • Fill level • Pregranulation mix time • Granulating liquid or solvent quantity • Impeller speed, tip speed, configuration, location, power consumption/torque • Chopper speed, configuration, location, power consumption • Spray nozzle type and location • Method of binder excipient addition (dry/wet) • Method of granulating liquid addition (spray or pump) • granulating liquid temperature • granulating liquid addition rate and time • Wet massing time (post-granulation mix time) • Bowl temperature(jacket temperature) • Product temperature • Post mixing time • Pump Type: Peristaltic, Gear type

 • Granulating liquid vessel (e.g., pressurized, heated)

Fluid bed granulation • Type of fluid bed • Inlet air distribution plate • Spray nozzle (tip size, type/quantity/ pattern/configuration/position) • Filter type and orifice size • Fill level • Bottom screen size and type • Preheating temperature/time • Method of binder excipient addition (dry/wet) • Granulating liquid temperature • Granulating liquid quantity • Granulating liquid concentration/viscosity • Granulating liquid holding time • Granulating liquid delivery method • Granulating liquid spray rate • Inlet air, volume, temperature, dew point • Atomization air pressure • Product and filter pressure differentials • Product temperature • Exhaust air temperature, flow

 • Filter shaking interval and duration

• Endpoint measurement (e.g., power consumption, torque, etc.)• Blend uniformity• Potency• Flow• Moisture content• Particle size and distribution• Granule size and distribution• Granule strength and uniformity• Bulk/tapped/true density• API polymorphic form• Cohesive/adhesive properties• Electrostatic properties• Granule brittleness• Granule elasticity

• Solid form/polymorph

Drying
 • Particle size, distribution • Fines/oversize • Particle shape • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Viscoelasticity • Brittleness • Elasticity • Solid form/polymorph

 • Moisture content

Fluidized bed • Inlet air volume, temperature, dew point • Product temperature • Exhaust air temperature, flow • Filter type and orifice size • Shaking interval and duration • Total drying timeTray • Type of tray dryer • Bed thickness/tray depth (depth of product per tray)

 • Type of drying tray liner (e.g., paper, plastic, synthetic fiber, etc.)

 • Quantity carts and trays per chamber • Quantity of product per tray • Drying time and temperature • Air flow • Inlet dew pointVacuum/microwave • Jacket temperature • Condenser temperature • Impeller speed • Bleed air volume • Vacuum pressure • Microwave power • Electric field • Energy supplied • Product temperature • Bowl and lid temperature

 • Total drying time

• Granule size and distribution• Granule strength, uniformity• Flow• Bulk/tapped/true density• Moisture content• Residual solvents• API polymorphic form or transition• Purity profile

• Moisture profile (e.g. product temperature vs. LOD)

• Potency• Cohesive/adhesive properties

• Electrostatic properties

Roller compaction/chilsonation
 • Particle size, distribution • Fines/oversize • Particle shape • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Bulk/tapped/true density • Viscoelasticity • Brittleness • Elasticity

 • Solid form/polymorph

 • Type of roller compactor • Auger (feed screw) type/design (horizontal, vertical or angular)

 • Deaeration (e.g., vacuum)

 • Auger (feed screw) speed • Roll shape (cylindrical or interlocking). • Roll surface design (smooth, knurled, serrated, or pocketed)

 • Roll gap width (e.g., flexible or fixed)

 • Roll speed • Roll pressure • Roller temperature

 • Fines recycled (yes or no, # of cycles)

• Ribbon appearance (edge attrition, splitting, lamination, color, etc.)• Ribbon thickness

• Ribbon density (e.g., envelop density)

• Ribbon porosity/solid fraction• Ribbon tensile strength/breaking force• Throughput rate

• API polymorphic form and transition

Extrusion–Spheronization
 • Particle size, distribution • Fines/oversize • Particle shape • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Bulk/tapped/true density • Viscoelasticity • Brittleness • Elasticity

 • Solid form/polymorph

• Type of extruder (screw or basket)• Screw length, pitch, and diameter• Screw channel depth• Screw blade configuration• Number of screws (single/dual)

• Die or screen configuration (e.g., radial or axial)

• Die length/diameter ratio• Roll diameter (mm)• Screen opening diameter (mm)• Screw speed (rpm)• Feeding rate (g/min)• Type and scale of spheronizer• Spheronizer load level• Plate geometry and speed• Plate groove design (spacing and pattern)• Air flow

• Residence time

• Extrudate• Density• Length/thickness/diameter• Moisture content• API polymorphic form and transition• Content uniformity• Throughput• Pellets after spheronization• Pellets size and distribution

• Pellets shape factor (e.g. aspect ratio)

• Bulk/Tapped density• Flow properties• Brittleness• Elasticity• Mechanical strength

• Friability

Hot melt extrusion
 • Particle size, distribution • Fines/oversize • Particle shape • Melting point • Density • Solid form/polymorph

 • Moisture content

• Screw design (twin/single)• Screw speed• Screw opening diameter (mm)• Solid and liquid feed rates• Feeder type/design• Feed rate• No. of zones• Zone temperatures

• Chilling rate

• Extrudate density• Length/thickness/diameter• Polymorphic form and transition• Content uniformity

• Throughput

Tabletting
 • Particle/granule size and distribution • Fines/oversize • Particle/granule shape • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Bulk/tapped/true density • Viscoelasticity • Brittleness • Elasticity • Solid form/polymorph

 • Moisture

• Type of press (model, geometry, number of stations)• Hopper design, height, angle, vibration• Feeder mechanism (gravity/forced feed, shape of wheels, direction of rotation, number of bars)• Feed frame type and speed• Feeder fill depth

• Tooling design (e.g., dimension, score configuration, quality of the metal)

• Maximum punch load• Press speed/dwell time• Precompression force• Main compression force• Punch penetration depth• Ejection force

• Dwell Time

• Tablet appearance• Tablet weight• Weight uniformity• Content uniformity• Hardness/tablet breaking force/tensile strength• Thickness/dimensions• Tablet porosity/density/solid fraction• Friability• Tablet defects• Moisture content• Disintegration

• Dissolution

Encapsulation
 • Particle/granule size and distribution • Fines/oversize • Particle/granule shape • Cohesive/adhesive properties • Electrostatic properties • Hardness/plasticity • Bulk/tapped/true density • Viscoelasticity • Brittleness • Elasticity • Solid form/polymorph

 • Moisture

• Machine type• Machine fill speed• Tamping Force• No. of tamps• Auger screw design/speed

• Powder bed height

• Capsule appearance• Weight• Weight uniformity• Content uniformity• Moisture content• Slug tensile strength• Disintegration

• Dissolution

Pan coating
 • Tablet dimensions • Tablet defects • Hardness/plasticity • Density • Porosity

 • Moisture content

• Type of pan coater (conventional or side-vented)• Pan (fully perforated or partial perforated)• Baffle (design, number, location)• Pan load level• Pan rotation speed• Spray nozzle (type, quantity, pattern, configuration, spray pattern)• Nozzle to bed distance• Distance between nozzles• Nozzle orientation• Total preheating time• Inlet air flow rate, volume, temperature, dew point• Product temperature• Individual nozzle spray rate• Total spray rate• Atomization air pressure• Pattern air pressure• Exhaust air temperature, air flow

• Total coating, curing time and drying time

• Coating efficiency• Core tablet weight before and after preheating• Moisture (gain/loss) during preheating• Environmental equivalency factor

• Coated drug product (e.g., tablet or capsule) appearance

• % weight gain• Film thickness• Coating (polymer and /or color) uniformity• Hardness/breaking force/Tensile strength• Friability• Moisture (gain/loss) during overall process• Residual solvent(s)• Disintegration• Dissolution• Tablet defects

• Visual attributes

Fluid bed coating
 • Tablet dimensions • Tablet defects • Hardness/plasticity

 • Density/porosity moisture content

• Type of fluid bed coater• Fluid bed load level• Partition column diameter• Partition column height• Number of partition columns• Air distribution plate type and size• Filter type and orifice size• Filter differential pressure• Filter shaking interval and duration• Spray nozzle (type, quantity, pattern, configuration)• Nozzle port size• Total preheating time• Spray rate per nozzle• Total spray rate• Atomization air pressure• Inlet air flow rate, volume, temperature, dew point• Product temperature• Exhaust air temperature, air flow

• Total coating, curing and drying time

• Coating efficiency• Core tablet weight before and after preheating• Moisture (gain/loss) during preheating• Environmental equivalency factor

• Coated drug product (e.g., tablet or capsule) appearance

• % weight gain• Film thickness• Coating (polymer and /or color) uniformity• Hardness/breaking force/tensile strength• Friability• Moisture (gain/loss) during overall process• Residual solvent(s)• Disintegration• Dissolution• Tablet defects

• Visual attributes

Laser drilling
 • Size/dimensions
 • Polymer type membrane thickness
• Conveyor type• Conveyor speed• Laser power• Number of pulses• Type(s) of lens(es)• One or two sided

• Number of holes

• Opening diameter (internal and external)• Depth

• Shape of the opening