What position is the patient placed in for abdominal surgery?

  1. Belcher AW, et al. Incidence of complications in the post-anesthesia care unit and associated healthcare utilization in patients undergoing non-cardiac surgery requiring neuromuscular blockade 2005-2013: a single center study. J Clin Anesth. 2017;43:33–8.

    Article  Google Scholar 

  2. Talei B, et al. Immediate complications related to anesthesia in patients undergoing uvulopalatopharyngoplasty for obstructive sleep apnea. The Laryngoscope. 2013;123(11):2892–5.

    Article  Google Scholar 

  3. Olympio MA, Youngblood BL, James RL. Emergence from anesthesia in the prone versus supine position in patients undergoing lumbar surgery. Anesthesiology. 2000;93(4):959–63.

    Article  CAS  Google Scholar 

  4. Wang R, et al. Pharmacist-driven multidisciplinary initiative continuously improves postoperative nausea and vomiting in female patients undergoing abdominal surgery. J Clin Pharm Ther. 2020; [published online ahead of print]. https://doi.org/10.1111/jcpt.13110.

  5. Scott B. Airway management in post anaesthetic care. J Perioperative Pract. 2012;22(4):135–8.

    Article  Google Scholar 

  6. von Ungern-Sternberg BS, et al. The effect of deep vs. awake extubation on respiratory complications in high-risk children undergoing adenotonsillectomy: a randomised controlled trial. Eur J Anaesthesiol. 2013;30(9):529–36.

    Article  Google Scholar 

  7. Drummond GB, Gordon NH. Forced expiratory flow-volume relationships. Changes after upper abdominal surgery. Anaesthesia. 1977;32(5):464–71.

    Article  CAS  Google Scholar 

  8. Grap MJ, et al. Effect of backrest elevation on the development of ventilator-associated pneumonia. Am J Crit Care. 2005;14(4):325–33.

    Article  Google Scholar 

  9. Robak O, et al. Short-term effects of combining upright and prone positions in patients with ARDS: a prospective randomized study. Crit Care (London, England). 2011;15(5):R230.

    Article  Google Scholar 

  10. Ballew C, et al. Factors associated with the level of backrest elevation in a thoracic cardiovascular intensive care unit. Am J Crit Care. 2011;20(5):395–9.

    Article  Google Scholar 

  11. Jung H, et al. Comparison of lateral and supine positions for tracheal extubation in children : a randomized clinical trial. Anaesthesist. 2019;68(5):303–8.

    Article  CAS  Google Scholar 

  12. Zou W, et al. A randomized comparison of the prone ventilation endotracheal tube versus the traditional endotracheal tube in adult patients undergoing prone position surgery. Scientific Rep. 2017;7(1):1769.

    Article  CAS  Google Scholar 

  13. Mezidi M, Guérin C. Effect of body position and inclination in supine and prone position on respiratory mechanics in acute respiratory distress syndrome. Intensive Care Med. 2019;45(2):292–4.

    Article  Google Scholar 

  14. Saager L, Maiese EM, Bash LD, et al. Incidence, risk factors, and consequences of residual neuromuscular block in the United States: the prospective, observational, multicenter RECITE-US study. J Clin Anesth. 2019;55:33–41.

    Article  Google Scholar 

  15. Yang SS, et al. Intravenous lidocaine to prevent postoperative airway complications in adults: a systematic review and meta-analysis. Br J Anaesth. 2020;124(3):314–23.

    Article  CAS  Google Scholar 

  16. Nath P, et al. Alkalinized Lidocaine Preloaded Endotracheal Tube Cuffs Reduce Emergence Cough After Brief Surgery: A Prospective Randomized Trial. Anesthesia Analgesia. 2018;126(2):615–20.

    Article  CAS  Google Scholar 

  17. Tilt A, et al. Operative Management of Abdominal Wound Dehiscence: outcomes and factors influencing time to healing in patients undergoing surgical debridement with primary closure. Wounds. 2018;30(11):317–23.

    PubMed  Google Scholar 

  18. Aouad MT, et al. Dexmedetomidine for improved quality of emergence from general anesthesia: a dose-finding study. Anesth Analg. 2019;129(6):1504–11.

    Article  Google Scholar 

  19. Hu S, et al. Effects of intravenous infusion of lidocaine and dexmedetomidine on inhibiting cough during the tracheal extubation period after thyroid surgery. BMC Anesthesiol. 2019;19(1):66.

    Article  Google Scholar 


Page 2

Demographic Semi-fowler’s position Supine position
Gender (Male/Female) 41/29 41/30
Age (mean yr ± SD) 50.4(±12.4) 52.7(±10.8)
ASA Class
 I 16 (22.9%) 17 (23.9%)
 II 49 (70.0%) 50 (70.4%)
 III 5 (7.1%) 7 (9.9%)
BMI (mean kg/m2 ± SD) 22.5(±3.0) 23.1(±3.4)
Baseline HR (mean beats/min ± SD) 76.3(±11.9) 79.6(±13.2)
Baseline MAP (mean mmHg±SD) 95.7(±13.7) 97.0(±13.0)
Baseline T (IQR centi-degree) 36.2 (36.1–36.5) 36.2 (36.1–36.6)
Baseline RR (IQR rate/min) 17 (13–20) 16 (13–18)
Sp02
  ≥ 96% 68 (97.1%) 70 (98.6%)
 <96% 2 (2.9%) 1 (1.4%)
Breath holding test (IQR seconds) 37 (32–43) 35 (28–47)
NYHA
 I 60 (85.7%) 59 (83.1%)
 II 9 (12.9%) 7 (16.9%)
 III 1 (1.4%)  
Mallampati
 I 40 (57.1%) 38 (53.5%)
 II 28 (40.0%) 31 (43.7%)
 III 2 (2.9%) 2 (2.8%)
Cigarette use 12 (17.1%) 13 (18.3%)
Type of surgery
 Laparoscopic surgery 18 (25.71%) 18 (25.35%)
 Traditional open surgery 52 (74.29%) 53 (74.65%)
Dexmedetomidine 54 (77.14%) 59 (83.10)
lidocaine cream 68 (97.14%) 70 (98.59%)
Anesthesia time (mean min ± SD) 319(±130) 315(±114)
Surgical time (min) 259(±125) 256(±112)
Extubation time (min) 38.00(±25.35) 36.52(±25.27)
Duration in PACU (min) 72.8(±27.9) 76.1(±24.6)
Estimated blood loss (ml) 289.90(±488.46) 387.42(±663.91)
Crystalloid replacement (ml) 1974.14(±909.89) 2077.75(±816.74)

  1. Results are expressed as mean ± SD with corresponding 95% confidential interval or median with interquartile rage [25–75%].SpO2 Peripheral oxygen saturation