Como se resolve a função exponencial?

A função exponencial é definida por f(x) = ax , sendo a a base da função e a variável x o expoente dessa base. Algumas restrições são necessárias para definirmos essa função, como a > 0 e a ≠ 1. Além disso, ela não assume valores menores ou iguais a zero para x.

Conta a lenda que um rei solicitou a seus súditos que inventassem um novo jogo para diminuir o tédio que ele sentia. Um inventor então criou o xadrez e pediu, como recompensa, que colocassem um grão na primeira casa do tabuleiro e o dobro de grãos na casa seguinte, e assim sucessivamente. Para a última casa seriam necessários 263 grãos! Essa famosa lenda persa descreve o modelo exponencial.

Restrições da função exponencial

A função exponencial é uma função de R em R*+, ou seja, seu domínio é definido para todo x real e sua imagem é definida apenas em números reais positivos e não nulos, ou seja, y > 0.

Para que isso ocorra, existem algumas restrições as quais essa função deve obedecer:

  • Se a = 1, temos que 1 elevado a qualquer número é igual a 1, então a função seria constante;
  • Se a < 0, a função não é definida para alguns expoentes. Por exemplo: se a < 0 e x = 1/2, não haveria ax, pois a função não é definida nos números reais;
  • Se a = 0, a função não seria definida para certos expoentes. Por exemplo: caso x seja negativo, não existiria ax, pois a função não é definida só nos números reais.

Gráfico da função exponencial

O gráfico dessa função é chamado curva exponencial e passa sempre pelo ponto (0,1), já que para x = 0, todo número elevado a 0 é igual a 1. Seu D(f) = R e sua Im(f) = R*+. Desse modo, o gráfico não toca o eixo x e não tem pontos nos quadrantes III e IV.

Para a > 1, a função é crescente. Já para 0 < a < 1, a função é decrescente.

Como se resolve a função exponencial?
Essa função é bijectiva, logo, admite função inversa.

Características fundamentais da função exponencial

As características a seguir irão te ajudar a fazer exercícios com funções exponenciais.

  • f(1) = a
  • f(x1 + x2) = f(x1) . f(x2)
  • f(x + h) = ax+h = ax . ah = ah.f(x)

Essas ideias podem ser usadas no estudo de funções exponenciais como f(x) = 2.3x; f(x) = 5x-2; f(x) = 5x -2; e assim por diante.

Reciproca da função exponencial

Dada a função exponencial f definida por f(x) = ax, chamamos de recíproca da função exponencial f a função g, tal que g(x) = a-x. Por exemplo, se f(x) = 2x, sua recíproca será g(x) = 2-x = (1/2)x.

Como se resolve a função exponencial?

Aplicações da função exponencial

Uma função exponencial muito importante na matemática é aquela cuja base é a constante e, chamada de número de Euler, base dos logaritmos naturais.

A função exponencial de base e é dada por f(x) = ex e aprece em muitas aplicações na matemática, além de descrever diversos fenômenos naturais.

O crescimento exponencial é característico de certos fenômenos naturais. No entanto, de modo geral, não se apresenta na forma ax, mas sim modificado por constantes características do fenômeno: f(x) = C . akx – sendo C e k essas constantes.

Como resolver exercícios de função exponencial?

Para conseguir entender melhor esses exercícios, você deve fazer uma breve revisão de potenciação e de suas propriedades. A seguir, veja na tabela as propriedades das potências:

Como se resolve a função exponencial?
Além disso, você também pode encontrar exercícios que envolvam raízes. É interessante fazer uma revisão de radiciação.

Como se resolve a função exponencial?

Você pode, ainda, encontrar uma potência com expoente racional, por exemplo, 2½ . Nesse caso, seja am/n , esse número é a raiz n-ésima de am. Portanto, vale dizer que:

Como se resolve a função exponencial?
Com real e positivo.

Exercício resolvido

1) (FMJ – SP) O número de bactérias em uma cultura t horas após o início de certo experimento é dado pela expressão:

N(t) = 1 200 . 20,41.t

Nessas condições, quanto tempo após o início do experimento a cultura terá 38.400 bactérias?

RESOLUÇÃO

N(t) = 38 400

Temos que:

38 400 = 1 200 . 20,41.t

20,41.t = 38 400/1200

20,41.t = 32

20,41.t = 25

Portanto:

0,41t = 5

t = 12,5h ou 12h e 30 minutos.

Função exponencial é a função que possui a variável em um expoente na sua lei de formação. A lei de formação de uma função exponencial é sempre f(x) = ax, em que x é a variável e a é a base.

Esse tipo de função é utilizado para descrever situações que crescem ou decrescem de forma exponencial. Um exemplo comum está no mercado financeiro, em situações envolvendo juros compostos, por exemplo, ou na análise da reprodução de certas culturas de bactérias, determinadas reações químicas etc.

A função exponencial pode ser crescente ou descrente, dependendo do valor de sua base a. Se a > 1(base maior que 1), então a função é crescente; se 0 < a <1 (base entre 0 e 1), ela é decrescente. A função exponencial é inversa à função logarítmica.

Leia também: Diferença entre função e equação

Resumo

  • Funções exponenciais são funções em que a lei de formação é f(x) = ax.
    • a → é um número real positivo diferente de 1 e é a base da potência.
    • x → variável da função.
  • Uma função exponencial pode ser crescente ou decrescente.
    • Se a > 1 → f(x) é crescente.
    • Se 0 < a < 1 → f(x) é decrescente.
  • A função exponencial é inversa da função logarítmica.

Na busca de compreender melhor a relação existente entre as grandezas, utilizamos as funções. Existem vários tipos de função, sendo uma delas a função exponencial, que é bastante recorrente.

A função exponencial é uma função com domínio e contradomínio no conjunto dos números reais e em que, na sua lei de formação, existe uma variável no expoente. Descrevemos uma função exponencial como f: R → R, com a lei de formação f(x) = ax. Em sua lei de formação, existem restrições para o valor da base a: ela sempre será um número real positivo diferente de 1.

Exemplos:

Valor numérico de uma função exponencial

Para encontrar o valor numérico de uma função exponencial, basta substituir, no lugar da variável, o valor desejado.

Exemplo:

Dada a função com lei de formação f(x) = 3X:

a) Calcule f(2).

f(2) = 32

f(2) = 9

b) Calcule f( – 2):

c) Calcule f(0):

f(0) = 30

f(0) = 1

Leia também: Função modular — quando a variável está dentro do módulo

Tipos de função exponencial

Existem duas possibilidades para a função exponencial: ela pode ser crescente ou decrescente. Ser crescente significa que, à medida que o valor do x aumenta, o valor de f(x) também aumenta; ser decrescente significa que, à medida que o valor do x diminui, o valor de f(x) também diminui.

Para saber se uma função exponencial f(x) = ax é crescente ou decrescente, é necessário analisar o valor da sua base a.

Se a > 1, então f(x) é crescente.

Exemplos:

f(x) = 2x

f(x) = 1,5x

Se 0 < a < 1, então f(x) é decrescente.

Exemplos:

Gráfico da função exponencial

Sabendo que a base de uma função exponencial é sempre positiva, então o gráfico dessa função  possui como imagem somente valores positivos, ficando sempre acima do eixo x. Vejamos alguns exemplos a seguir:

Exemplo 1:

→ F(x) = 2x

Note que a = 2, logo essa função exponencial é crescente. Vejamos o gráfico dela a seguir:

Perceba que, à medida que o valor de x aumenta, o valor de y também aumenta no gráfico da função.

Exemplo 2:

Sabemos que 1 dividido por 2 é igual a 0,5, então, nesse caso, a base é um número entre 0 e 1, o que faz com que essa função exponencial seja decrescente. Vejamos a representação gráfica dessa função:

Note que o gráfico é decrescente, pois, quanto o valor de x, menor é o valor de y.

Propriedades da função exponencial

  • 1ª propriedade: em uma função exponencial do tipo f(x) = ax, a imagem de x = 0 é sempre 1. Essa propriedade é consequência da propriedade da potenciação de que todo número elevado a zero é igual a um.

f(0) =a0 = 1

  • 2ª propriedade: a função exponencial pode ser crescente ou decrescente, mas tem comportamento exclusivamente crescente quando a sua base a é maior que 1 e comportamento exclusivamente decrescente quando a sua base a é um número entre 0 e 1.
  • 3ª propriedade: a função exponencial é injetora. Dados quaisquer dois números reais distintos, ou seja, x1 ≠ x2, teremos f(x1) ≠ f(x2).
  • 4ª propriedade: o gráfico da função exponencial nunca corta o eixo x. Como a base a é sempre um número positivo, por menor que seja o valor de x, ela nunca será igual a 0, o que faz com que a imagem da função seja sempre um número real positivo não nulo.

Leia também: Funções no Enem: como esse tema é cobrado?

Função exponencial e função logarítmica

A função exponencial é uma função inversível. A função inversa de uma função exponencial é sempre uma função logarítmica. Sendo assim, se traçarmos o gráfico de uma função exponencial de base a e de uma função logarítmica de base a no mesmo plano cartesiano, o gráfico dessas funções será simétrico.

Como se resolve a função exponencial?
A função logarítmica é inversa da função exponencial.

Exercícios resolvidos sobre função exponencial

Questão 1

(GS Assessoria e Concursos) A equação exponencial C = 2 (x + 1) representa a progressão dos lucros acumulados de uma empresa, em milhões. Sendo x a quantidade de meses acumulados, qual será o lucro em um trimestre?

A) O lucro será de 26 milhões.

B) O lucro será de 8 milhões.

C) O lucro será de 17 milhões.

D) O lucro será de 27 milhões.

E) O lucro será de 16 milhões.

Resolução:

Alternativa E.

Sabemos que um trimestre são 3 meses, ou seja, x = 3.

Substituindo na fórmula, temos que:

C = 2(3+1)

C = 24

C = 16 milhões

Questão 2

(Uneb-BA) A expressão P(t) = K · 20,05t fornece o número P de milhares de habitantes de uma cidade, em função do tempo t, em anos. Se em 1990 essa cidade tinha 300 000 habitantes, quantos habitantes, aproximadamente, espera-se que ela tenha no ano 2000?

A) 352 000

B) 401 000

C) 423 000

D) 439 000

E) 441 000

Resolução:

Alternativa C.

Sabemos que 2000 – 1990 = 10 anos. Calcularemos, então, o valor de P(10).

K é a população que a cidade tinha em 1990, que é de 300.000, logo:

P(t) = K · 20,05t

P(10) = 300.000 · 20,05·10

P(10) = 300.000 · 20,5

P(10) = 300.000 · 1,41

P(10) = 423.000