Exercícios resolvidos de potência e raiz quadrada

A radiciação é uma operação matemática que possui várias aplicações, dominá-la é importante para resolver-se problemas envolvendo potenciação, já que essas operações são inversas.

Calcular a raiz enésima de um número x é encontrar qual número que, elevado a n, é igual a x. A radiciação possui propriedades importantes que servem para facilitar as contas e realizar simplificações de radicais. Para realizar operações com radiciação, é importante o domínio de cada uma das suas propriedades e compreender o significado de cada um dos seus termos.

Leia também: Como fazer a racionalização com raízes enésimas?

Exercícios resolvidos de potência e raiz quadrada
Radiciação é uma operação matemática sendo a inversa da potenciação.

Representação de uma radiciação

Para representar a raiz de um número, utilizamos um símbolo conhecido como radical (√ ), a raiz de um número qualquer é representada pela seguinte operação:

√ → radical

a→ radicando

b→ raiz

n→ índice

Observação: quando n = 2, chamamos de raiz quadrada, e, nesse caso, escrever o número 2 no índice torna-se opcional.

Para calcular-se a raiz de um número, é fundamental entender que a radiciação é a operação inversa da potenciação, então dominar potenciação é essencial para calcular-se a raiz de um número.

Ao escrever a raiz enésima de a e afirmar que ela é igual a b, ou seja:

estamos dizendo que, quando calculamos bn, encontramos o número representado pela letra a. Portanto é essencial entender que quando se fala que um número é raiz enésima de um outro número, isso significa que a raiz elevada ao índice é igual ao radicando.

Exemplos:

Veja também: Propriedades das potências – quais são e como as utilizar?

Propriedades da radiciação

As propriedades da radiciação são meios para facilitar-se o cálculo de problemas que envolvem tal operação. Existe um total de sete propriedades, e dominar cada uma delas é de grande importância para resolução de problemas sobre o tema.

A raiz enésima de um número a elevado a n é igual ao próprio número a, ou seja, calculando a raiz de um número cujo o índice da raiz é igual ao expoente do radicando, encontraremos como resposta o próprio radicando.

A raiz enésima do produto é igual ao produto de duas raízes enésimas. Se o radicando for o produto entre dois números, podemos separar como a multiplicação da raízes enésimas de cada uma de suas parcelas.

A raiz enésima de uma divisão é igual ao quociente entre duas raízes enésimas. Se o radicando for uma divisão entre dois números, podemos separar como a raiz enésima do dividendo, dividido pela raiz enésima do divisor.

Podemos multiplicar ou dividir (simplificar) o índice da raiz, desde que a mesma operação seja feita com o expoente do radicando.

Quando encontramos a raiz de uma raiz, podemos multiplicar seus índices e representar essa operação com um único radical.

A potência de uma raiz enésima pode ser reescrita como a raiz enésima do radicando elevada a essa potência.

A raiz enésima pode ser transformada em uma potência com expoente racional. O índice da raiz corresponde ao denominador, e o expoente da base corresponde ao numerador:

Acesse também: Como aplicar as propriedades da radiciação?

Simplificação de radicais

Quando estamos trabalhando com um valor que não possui uma raiz exata, podemos fazer a simplificação desse radical. Para isso, é necessário algum método para decompor o número em fatores primos.

Exemplo:

Escreva na forma simplificada a raiz quadrada de 360.

Vamos realizar a fatoração de 360 utilizando o método das divisões sucessivas.

360|2→ 2 é o menor número primo que divide 360; 180|2→ 2 é o menor número primo que divide 180;   90|2 → 2 é o menor número primo que divide 90;

  45|3 → 3 é o menor número primo que divide 45;


  15|3 → 3 é o menor número primo que divide 15;
    5|5 → 5 é o menor número primo que divide 5.
    1|

Sendo assim, temos que 360= 2 · 2 · 2 · 3 · 3 · 5.

Como o nosso objetivo é simplificar uma raiz quadrada, vamos agrupar esses fatores de 2 em 2, logo, podemos reescrever 360 como:

360= 2² · 2 · 3² · 5

Assim, podemos reescrever a raiz de 360, utilizaremos a primeira propriedade para simplificar a raiz quadrada, o que significa que os termos que estão elevados ao quadrado sairão do radical, e os que não estão permanecem dentro do radical:

Operações com radicais

A adição e a subtração de dois radicais são operações que, muitas vezes, são feitas de forma errada. Acontece que não podemos somar ou subtrair o radical de uma raiz com o radical de outra, ainda que o índice seja o mesmo:

√2 + √3 ≠ √5

Na busca por não cometer esse erro, o que deve ser feito é deixar representada a adição como no primeiro membro da equação. Vale lembrar que se trata de raízes. Realizar a soma ou a subtração de duas raízes e representá-las de forma mais simples só é possível se estivermos falando da mesma raiz, por exemplo:

√2 + √2 = 2√2

Nesse caso sempre somaremos os coeficientes, ou seja, o número que acompanha a raiz, lembrando que não se pode somar o radicando de cada uma delas.

Quando necessário, podemos simplificar as raízes para que elas tenham os mesmos radicandos, e aí sim realizar a operação:

√72 - √50

Sabemos que

72 = 2 · 2 · 2 · 3 · 3

72 = 2² · 2 · 3²

e também podemos reescrever o 40 como:

50 = 2 · 5 · 5

50 = 2 · 5²

Então teremos:

Para realizar a multiplicação, é necessário que o índice seja o mesmo para todas as raízes. Quando isso ocorre, acabamos recorrendo à 2ª e à 3ª propriedade. Somente nesses casos é possível realizar-se a operação.

Exemplo:

Exercícios resolvidos

Questão 1 - Sendo “a” e “b” números reais positivos e “n” e “m” números inteiros maiores do que 1, assinale a alternativa incorreta:

Resolução

Alternativa B.

Analisando-se as alternativas, a única que não corresponde a uma das propriedades da radiciação é a B, não podemos separar a soma da forma que foi feito.

a) → 2ª propriedade

b) → Não é uma propriedade da radiciação.

c) → 5ª propriedade

d) → 1ª propriedade

Questão 2 -  (IFG 2010) O resultado do cálculo da expressão é:

Resolução

Alternativa C.

Note que todas as frações possuem mesmo índice, o que permite que seja feita a multiplicação, então, primeiro, faremos a propriedade distributiva e, posteriormente, faremos as simplificações necessárias. Para facilitar, escreveremos 25 como 5².

Teste seus conhecimentos com esta lista de exercícios sobre raiz quadrada e verifique se você domina suas propriedades.

Questão 1

Calculando a raiz quadrada de 2304, encontramos como solução:                                                 

A) 42

B) 44

C) 48

D) 52

E) 54

Questão 2

Uma região no formato de quadrado possui área igual a 729 m². Diante disso, qual é a medida do lado dessa região, em metros?

A) 19

B) 21

C) 23

D) 25

E) 27

Questão 3

Ao resolver a seguinte expressão:

\(\sqrt{\sqrt{81}}+\sqrt{16}-\sqrt{225}+\sqrt{144}\)

Encontramos como resultado

A) 1

B) 2

C) 3

D) 4

E) 5

Questão 4

Um retângulo possui comprimento e largura medindo, respectivamente, \(\sqrt{18}\) e \(\sqrt{72}\) metros. O perímetro desse retângulo, em metros, é de:

A) \(2\sqrt3\)

B) \(9\sqrt2\)

C) \(18\sqrt2\)

D) \(15\sqrt3\)

Questão 5

Sobre as propriedades da raiz quadrada, julgue as afirmativas a seguir:

I. \(\ \sqrt4\cdot\sqrt5=\sqrt{20}\)

II. \(\ \sqrt2+\sqrt3=\sqrt5\)

III. \(\sqrt4\ -\sqrt3=\sqrt1\)

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Somente as afirmativas I e II são verdadeiras.

E) Somente as afirmativas II e III são verdadeiras.

Questão 6

(Cefet/RJ 2015) Considere m a média aritmética dos números 1, 2, 3, 4 e 5. Qual é a opção que mais se aproxima do resultado da expressão abaixo?

A) 1,1

B) 1,2

C) 1,3

D) 1,4

Questão 7

(IFSC 2018) Analise as afirmações seguintes:

I.  \(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

II. \(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

III. Efetuando-se \(\left(3+\sqrt5\right)\left(3-\sqrt5\right)\), obtém-se um número múltiplo de 2.

Assinale a alternativa CORRETA.

A) Todas são verdadeiras.

B) Apenas I e III são verdadeiras.

C) Todas são falsas.

D) Apenas uma das afirmações é verdadeira.

E) Apenas II e III são verdadeiras.

Questão 8

Sobre a raiz quadrada, julgue as afirmativas a seguir, utilizando V para verdadeira e F para falsa:

I. \(\sqrt{-4}=-2\)

II. \(\sqrt{2+7}=\sqrt2+\sqrt7\)

III. \(\sqrt{\sqrt{16}}\ =\ 2\)

As afirmativas são, respectivamente:

A) FFF

B) VVV

C) VFF

D) FFV

E) FVV

Questão 9

(PM Piauí 2009 Nucepe) A expressão \(\sqrt{18}+\sqrt{50}\) é equivalente a:

A) \(\ 2\sqrt2\)

B) \(\ 3\sqrt2\)

C) \(8\sqrt2\)

D) \(15\sqrt2\)

E) \(8\sqrt3\)

Questão 10

Simplificando a seguinte expressão:

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

encontramos como resultado

A) 2

B) 3

C) 4

D) 6

E) 9

Questão 11

Sabendo que os lados do seguinte retângulo foram dados em metros, a forma simplificada da área desse polígono é igual a:

A) \(5\sqrt6\) m

B) \(10\sqrt6\) m

C) \(6\sqrt5\) m

D) \(5\sqrt2\) m

E) \(\ 4\sqrt{10}\) m

Questão 12

(UFPI) Desenvolvendo a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

Encontramos um número no formato:

\(a+b\sqrt[2]{3}\)

Com a e b inteiros. O valor de a + b é:

A) 59

B) 47

C) 41

D) 57

E) 1

Resposta - Questão 1

Alternativa C

Realizando a fatoração de 2304:

2304\(2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2\)

Portanto:

\(\sqrt{2304}=\sqrt{2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2}=2\cdot2\cdot2\cdot2\cdot3=48\)

Resposta - Questão 2

Alternativa E

Para encontrar a medida do lado da região que possui formato de quadrado, basta calcularmos a raiz quadrada de 729.

Logo, temos que:

\(729=3^2\cdot3^2\cdot3^2\)

\(\sqrt{729}=\sqrt{3^2\cdot3^2\cdot3^2}=3\cdot3\cdot3=\ 27\ m\)

Resposta - Questão 3

Alternativa B

Calculando cada uma das raízes quadradas:

\(\sqrt9+4-15+12\)

\(3\ +\ 4\ -\ 15\ +\ 12\)

\(4\ \)

Resposta - Questão 4

Alternativa C

Sabemos que:

\(18=3^2\cdot2\)

\(72=2^2\cdot2\cdot3^2\)

Logo, temos que:

\(\sqrt{18}=\sqrt{3^2\cdot2}=3\sqrt2\)

\(\sqrt{72}=\sqrt{2^2\cdot2\cdot3}=2\cdot3\sqrt2=6\sqrt2\)

Portanto, o perímetro desse retângulo é igual a:

\(P=2\left(3\sqrt2+6\sqrt2\right)\)

\(P=2\cdot9\sqrt2\)

\(P=18\sqrt2\)

Resposta - Questão 5

Alternativa A

I. Verdadeira

Uma das propriedades da raiz quadrada é que podemos multiplicar o radicando, como foi feito. Logo, temos que:

\(\sqrt4\cdot\sqrt5=\sqrt{4\cdot5}=\sqrt{20}\)

II. Falsa

A soma de duas raízes gera resultado diferente da soma dos radicandos. Assim, não podemos somá-los.

III. Falsa

A diferença de duas raízes não é igual à diferença dos seus radicandos, logo, essa não é uma propriedade da raiz quadrada.

Resposta - Questão 6

Alternativa D

De início, calcularemos a média aritmética entre 1, 2, 3, 4 e 5:

\(m=\frac{1+2+3+4+5}{5}\)

\(m=\frac{15}{5}\)

\(m\ =\ 3\)

Substituindo m = 1 na expressão:

\(\sqrt{\frac{\left(1-3\right)^2+\left(2-3\right)^2+\left(3-3\right)^2+\left(4-3\right)^2+\left(5-3\right)^2}{5}}\)

\(\sqrt{\frac{\left(-2\right)^2+\left(-1\right)^2+0^2+1^2+2^2}{5}}\)

\(\sqrt{\frac{4+1+0+1+4}{5}}\)

\(\sqrt{\frac{10}{5}}\)

\(\sqrt2\ \approx1,4\)

Resposta - Questão 7

Alternativa B

I. Verdadeira

\(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

\(-25-4\bullet\left(-10\right)\div5=-17\)

\(-25\ +\ 40\ \div\ 5\ =\ -17\)

\(-25\ +\ 8\ =\ -17\)

\(-17\ =\ -17\)

II. Falsa

\(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

\(35\div\left(3+9-8+1\right)\times2=10\)

\(35\ \div\ 5\ \times\ 2\ =10\)

\(7\ \times\ 2\ =10\)

\(14\ =10\ \)

III. Verdadeira

\(\left(3+\sqrt5\right)\left(3-\sqrt5\right)=3^2-\sqrt{5^2}\ =\ 9\ -\ 5\ =\ 4\)

Resposta - Questão 8

Alternativa D

I. Falsa

Não há raiz quadrada de números negativos.

II. Falsa

Sabemos que 2 + 7 = 9 e que \(\sqrt9=3\). Por outro lado, \(\sqrt2+\sqrt7\ \) é diferente de 3, logo, essa não é uma propriedade possível para a radiciação.

III. Verdadeira

\(\sqrt{\sqrt{16}}=\sqrt4=2\)

Resposta - Questão 9

Alternativa C

Simplificando, temos que:

\(\sqrt{18}+\sqrt{50}\)

\(\sqrt{2\cdot9}+\sqrt{2\cdot25}\)

\(3\sqrt2+5\sqrt2\)

\(8\sqrt2\)

Resposta - Questão 10

Alternativa B

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

\(\sqrt{\left(4-\sqrt5\right)\cdot\left(4+\sqrt5\right)}\)

\(\sqrt{4^2-\sqrt{5^2}}\)

\(\sqrt{16-5}\)

\(3\)

Resposta - Questão 11

Alternativa B

Sabemos que a área do retângulo é igual ao produto da base pela altura:

\(A=\sqrt{30}\cdot\sqrt{20}\)

\(A=\sqrt{30\cdot20}\)

\(A\ =\ \sqrt{\left(3\cdot5\cdot2\right)\cdot\left(2^2\cdot5\right)}\)

\(A=\sqrt{3\cdot2\cdot2^2\cdot5^2}\)

\(A=2\cdot5\sqrt{3\cdot2}\)

\(A=10\sqrt{6\ }\)

Resposta - Questão 12

Alternativa C

Simplificando a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

\(\left(\sqrt[2]{3\cdot3^2}+\sqrt[2]{3}-1\right)^2\)

\(\left(3\sqrt[2]{3}+\sqrt[2]{3}-1\right)^2\)

\(\left(4\sqrt[2]{3}-1\right)^2\)

Calculando o quadrado da diferença:

\(16\cdot3-2\cdot4\sqrt[2]{3}+1^2\)

\(48-8\sqrt[2]{3}+1\)

\(49-8\sqrt[2]{3}\)

Se a = 49 e b = – 8, então:

a + b = 49 – 8 = 41