How to find a term in a binomial expansion

Answer

How to find a term in a binomial expansion
Verified

Hint: First write down the binomial expression and then write its expansion. The expansion should at least contain $2 - 3$ terms from the beginning and $2 - 3$ terms from the end. Check out the pattern of the progressing terms and then write the general formula for the ${n^{th}}$ term for the binomial expansion.

Complete step-by-step answer:

Let’s write the ${n^{th}}$ term for the binomial expression, ${(a + b)^n}$Here, $a,b\;$ are real numbers and $n$ is a positive integer.${(a + b)^n}$ when expanded we get,$\Rightarrow {(a + b)^n}{ = ^n}{C_0}{ + ^n}{C_1}{a^{n - 1}}{b^1}{ + ^n}{C_2}{a^{n - 2}}{b^2} + ........{ + ^n}{C_n}{b^n}$Where $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ $r$ is any number in the range, As we can see that every term follows a pattern which is,The power of $a$ keeps on consecutively decreasing, whereas that of $b$ increases progressively.So, collectively we can write the changes as,Considering $r$ is any ${n^{th}}$ term.$\Rightarrow {T_{r + 1}}{ = ^n}{C_r}{a^{n - r}}{b^r}$We can see that $r$ in the $^n{C_r}$ keeps on increasing, the power of $b$ will be the same as $r$And the power of $a$ will be $n - r$ .Substitute any value in place of $r$ to cross-check if we are getting the same term as in the sequence.

$\therefore$ The ${n^{th}}$ term of binomial expansion is ${T_{r + 1}}{ = ^n}{C_r}{a^{n - r}}{b^r}$

Additional information: A binomial is a mathematical expression that contains two terms that are together by any of the operations either addition or subtraction. The coefficients of the binomial expansion follow a determined pattern which is known as Pascal’s Triangle. Considering a binomial expansion, any term in it, the sum of all the exponents of $a$ and $b$ is always equal to $n$ . Here, $n$ is the power of the binomial expression.

Note:

Whenever a binomial expression is given, always write its expansion. If the power of the binomial expression is $n$ then the total number of all the terms in the expansion is $(n + 1)$ . One must not forget about this, if not it would go wrong while finding the last term.

A binomial is a polynomial with two terms

How to find a term in a binomial expansion
example of a binomial

What happens when we multiply a binomial by itself ... many times?

a+b is a binomial (the two terms are a and b)

Let us multiply a+b by itself using Polynomial Multiplication :

(a+b)(a+b) = a2 + 2ab + b2

Now take that result and multiply by a+b again:

(a2 + 2ab + b2)(a+b) = a3 + 3a2b + 3ab2 + b3

And again:

(a3 + 3a2b + 3ab2 + b3)(a+b) = a4 + 4a3b + 6a2b2 + 4ab3 + b4

The calculations get longer and longer as we go, but there is some kind of pattern developing.

That pattern is summed up by the Binomial Theorem:

How to find a term in a binomial expansion

The Binomial Theorem

Don't worry ... it will all be explained!

And you will learn lots of cool math symbols along the way.

Exponents

How to find a term in a binomial expansion

First, a quick summary of Exponents.

An exponent says how many times to use something in a multiplication.

Example: 82 = 8 × 8 = 64

An exponent of 1 means just to have it appear once, so we get the original value:

Example: 81 = 8

An exponent of 0 means not to use it at all, and we have only 1:

Example: 80 = 1

Now on to the binomial.

We will use the simple binomial a+b, but it could be any binomial.

Let us start with an exponent of 0 and build upwards.

Exponent of 0

When an exponent is 0, we get 1:

(a+b)0 = 1

Exponent of 1

When the exponent is 1, we get the original value, unchanged:

(a+b)1 = a+b

Exponent of 2

An exponent of 2 means to multiply by itself (see how to multiply polynomials):

(a+b)2 = (a+b)(a+b) = a2 + 2ab + b2

Exponent of 3

For an exponent of 3 just multiply again:

(a+b)3 = (a2 + 2ab + b2)(a+b) = a3 + 3a2b + 3ab2 + b3

We have enough now to start talking about the pattern.

The Pattern

In the last result we got:

a3 + 3a2b + 3ab2 + b3

Now, notice the exponents of a. They start at 3 and go down: 3, 2, 1, 0:

How to find a term in a binomial expansion

Likewise the exponents of b go upwards: 0, 1, 2, 3:

How to find a term in a binomial expansion

If we number the terms 0 to n, we get this:

k=0 k=1 k=2 k=3
a3 a2 a 1
1 b b2 b3

Which can be brought together into this:

an-kbk

How about an example to see how it works:

The terms are:

k=0: k=1: k=2: k=3:
  an-kbk
= a3-0b0
= a3
  an-kbk
= a3-1b1
= a2b
  an-kbk
= a3-2b2
= ab2
  an-kbk
= a3-3b3
= b3

It works like magic!

Coefficients

So far we have: a3 + a2b + ab2 + b3

But we really need:a3 + 3a2b + 3ab2 + b3

We are missing the numbers (which are called coefficients).

Let's look at all the results we got before, from (a+b)0 up to (a+b)3:

How to find a term in a binomial expansion

And now look at just the coefficients (with a "1" where a coefficient wasn't shown):

How to find a term in a binomial expansion

They actually make Pascal's Triangle!

Each number is just the two numbers above it added together (except for the edges, which are all "1")

(Here I have highlighted that 1+3 = 4)

How to find a term in a binomial expansion

Armed with this information let us try something new ... an exponent of 4:

a exponents go 4,3,2,1,0:   a4 + a3 + a2 + a + 1  
b exponents go 0,1,2,3,4:   a4 + a3b + a2b2 + ab3 + b4  
coefficients go 1,4,6,4,1:   a4 + 4a3b + 6a2b2 + 4ab3 + b4
How to find a term in a binomial expansion

And that is the correct answer (compare to the top of the page).

We have success!

We can now use that pattern for exponents of 5, 6, 7, ... 50, ... 112, ... you name it!

That pattern is the essence of the Binomial Theorem.

Now you can take a break.

When you come back see if you can work out (a+b)5 yourself.

Answer (hover over): a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

As a Formula

Our next task is to write it all as a formula.

We already have the exponents figured out:

an-kbk

But how do we write a formula for "find the coefficient from Pascal's Triangle" ... ?

Well, there is such a formula:

How to find a term in a binomial expansion

It is commonly called "n choose k" because it is how many ways to choose k elements from a set of n.

The "!" means "factorial", for example 4! = 4×3×2×1 = 24

You can read more at Combinations and Permutations.

And it matches to Pascal's Triangle like this:

(Note how the top row is row zero
and also the leftmost column is zero!)

How to find a term in a binomial expansion

Let's see if the formula works:

How to find a term in a binomial expansion

Yes, it works! Try another value for yourself.

Putting It All Together

The last step is to put all the terms together into one formula.

But we are adding lots of terms together ... can that be done using one formula?

Yes! The handy Sigma Notation allows us to sum up as many terms as we want:

How to find a term in a binomial expansion

Sigma Notation

Now it can all go into one formula:

How to find a term in a binomial expansion

The Binomial Theorem

Use It

OK ... it won't make much sense without an example.

So let's try using it for n = 3 :

How to find a term in a binomial expansion

BUT ... it is usually much easier just to remember the patterns:

  • The first term's exponents start at n and go down
  • The second term's exponents start at 0 and go up
  • Coefficients are from Pascal's Triangle, or by calculation using n!k!(n-k)!

Like this:

Start with exponents: y450 y351 y252 y153 y054
Include Coefficients: 1y450 4y351 6y252 4y153 1y054

Then write down the answer (including all calculations, such as 4×5, 6×52, etc):

(y+5)4 = y4 + 20y3 + 150y2 + 500y + 625

We may also want to calculate just one term:

The exponents for x3 are 8-5 (=3) for the "2x" and 5 for the "4":

(2x)345

(Why? Because:

2x: 8 7 6 5 4 3 2 1 0
4: 0 1 2 3 4 5 6 7 8
  (2x)840 (2x)741 (2x)642 (2x)543 (2x)444 (2x)345 (2x)246 (2x)147 (2x)048

But we don't need to calculate all the other values if we only want one term.)

And let's not forget "8 choose 5" ... we can use Pascal's Triangle, or calculate directly:

n!k!(n-k)! = 8!5!(8-5)! = 8!5!3! = 8×7×63×2×1 = 56

And we get:

56(2x)345

Which simplifies to:

458752 x3

A large coefficient, isn't it?

Geometry

The Binomial Theorem can be shown using Geometry:

In 2 dimensions, (a+b)2 = a2 + 2ab + b2

How to find a term in a binomial expansion

In 3 dimensions, (a+b)3 = a3 + 3a2b + 3ab2 + b3

How to find a term in a binomial expansion

In 4 dimensions, (a+b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(Sorry, I am not good at drawing in 4 dimensions!)

Advanced Example

And one last, most amazing, example:

We can use the Binomial Theorem to calculate e (Euler's number).

e = 2.718281828459045... (the digits go on forever without repeating)

It can be calculated using:

(1 + 1/n)n

(It gets more accurate the higher the value of n)

That formula is a binomial, right? So let's use the Binomial Theorem:

How to find a term in a binomial expansion

First, we can drop 1n-k as it is always equal to 1:

How to find a term in a binomial expansion

And, quite magically, most of what is left goes to 1 as n goes to infinity:

How to find a term in a binomial expansion

Which just leaves:

How to find a term in a binomial expansion

With just those first few terms we get e ≈ 2.7083...

Try calculating more terms for a better approximation! (Try the Sigma Calculator)

 
Challenging 1 Challenging 2

Isaac Newton

As a footnote it is worth mentioning that around 1665 Sir Isaac Newton came up with a "general" version of the formula that is not limited to exponents of 0, 1, 2, .... I hope to write about that one day.

Copyright © 2017 MathsIsFun.com