Exercicios de raiz quadrada com resultado

A raiz quadrada é uma operação matemática que acompanha todos os níveis escolares. Trata-se de um caso particular de radiciação, no qual o índice do radical é igual a 2, ou seja, é a operação inversa das potências de expoente igual a 2. Quando um número positivo possui raiz quadrada exata, dizemos que esse número é um quadrado perfeito.

Leia também: Propriedades envolvendo números complexos

Definição e nomenclatura dos elementos da radiciação

Sejam a e b dois números reais e n um número natural diferente de zero, então:

Exercicios de raiz quadrada com resultado

a = radicando
n = índice
= radical

As raízes quadradas, como dito, são um caso particular de radiciação. Ao escrever uma raiz quadrada, não é necessário explicitar o índice igual a dois.

Para os demais tipos de raízes, é obrigatório colocar o índice, ou seja, para n = 3, n = 4, n = 5 …, é necessário deixar explícito no índice do radical o valor de n.

Leia também: Redução de radicais ao mesmo índice

Para calcular a raiz quadrada de um número real, basta seguir a definição de radiciação:

A definição nos diz que a raiz quadrada de um número real a é o número b se, e somente se, o número b elevado ao quadrado for igual ao número a, ou seja, temos que imaginar um número que, ao quadrado, resulte no número dentro do radical.

Exemplos:

√36 = 6, pois 62 = 36

√121 = 11, pois 112  = 121

Os números que possuem raiz quadrada são denominados quadrados perfeitos. Assim, dos exemplos acima, os números 36 e 121 são quadrados perfeitos. Quando o número não é um quadrado perfeito, é necessário realizar o cálculo de raízes não exatas.

Exercicios de raiz quadrada com resultado
Raiz quadrada de um número qualquer, representado por x.

Observações:

1. Perceba, com base na definição de raiz quadrada, que sempre procuramos um número que, quando elevado ao quadrado, resulta no número dentro do radical. Tendo em vista as propriedades da potenciação, sabemos que um número ao quadrado é sempre positivo. Isso nos leva a concluir que não é possível extrair raiz quadrada de um número negativo no conjunto dos números reais.

Exemplo:

— 36 = ?

Do exemplo acima, teríamos que imaginar um número que, elevado ao quadrado, resultaria em -36. No conjunto dos números reais, isso não é impossível.

2. Caso o radicando seja um número relativamente grande, o que impossibilitaria o cálculo mental, basta fazer a decomposição em primos e agrupar sempre que possível em potências de expoente dois.

Exemplo:

Vamos determinar o valor da raiz quadrada de 441.

√441

Para determinar a raiz de 441, vamos fazer a decomposição em primos:

441 = 32 . 72

Assim,

√441 = √32 . 72

Agora, aplicando as propriedades de radiciação, temos que:

√441 = 3 . 7 = 21

O número 21 elevado ao quadrado é igual a 441.

Mapa Mental: Raiz Quadrada

*Para baixar o mapa mental em PDF, clique aqui!

Interpretação geométrica da raiz quadrada

Imagine um terreno com área de 144 m2.

Para determinar quanto mede o lado desse terreno em forma de quadrado, temos que relembrar como calcular sua área.

Aquadrado = l2

A representa o valor da área, e l é o valor do lado.

Como a área vale 144 m2, temos que:

144= l2

Observe a equação acima. Note que precisamos encontrar um número que, elevado ao quadrado, seja igual a 144, isto é, temos a definição de raiz quadrada! Então:

√144 = 12

O número 144 na forma fatorada é:

144 = 22 . 22 . 32

Assim, vamos ter que:

√144 = √22 . 22 . 32

Por fim,

√144 = 2 . 2 . 3 = 12

Portanto, o lado do terreno mede 12 m.

Exercícios resolvidos

1. Elabore uma lista com os quadrados perfeitos de 1 a 100.

Os quadrados perfeitos de 1 a 100 são: 1, 4, 9, 16, 25, 36, 49, 64, 81 e 100

2. Determine a raiz quadrada do número 1024.

1024

Para determinar a raiz de 1024, vamos fazer a decomposição em primos:

1024 = 22 . 22 . 22 . 22 . 22

Então,

 Considerando a segunda igualdade com as propriedades da radiciação já aplicadas.

*Mapa Mental por Luiz Paulo Silva
Graduado em Matemática

Por Robson Luiz
Professor de Matemática

Teste seus conhecimentos com esta lista de exercícios sobre raiz quadrada e verifique se você domina suas propriedades.

Questão 1

Calculando a raiz quadrada de 2304, encontramos como solução:                                                 

A) 42

B) 44

C) 48

D) 52

E) 54

Questão 2

Uma região no formato de quadrado possui área igual a 729 m². Diante disso, qual é a medida do lado dessa região, em metros?

A) 19

B) 21

C) 23

D) 25

E) 27

Questão 3

Ao resolver a seguinte expressão:

\(\sqrt{\sqrt{81}}+\sqrt{16}-\sqrt{225}+\sqrt{144}\)

Encontramos como resultado

A) 1

B) 2

C) 3

D) 4

E) 5

Questão 4

Um retângulo possui comprimento e largura medindo, respectivamente, \(\sqrt{18}\) e \(\sqrt{72}\) metros. O perímetro desse retângulo, em metros, é de:

A) \(2\sqrt3\)

B) \(9\sqrt2\)

C) \(18\sqrt2\)

D) \(15\sqrt3\)

Questão 5

Sobre as propriedades da raiz quadrada, julgue as afirmativas a seguir:

I. \(\ \sqrt4\cdot\sqrt5=\sqrt{20}\)

II. \(\ \sqrt2+\sqrt3=\sqrt5\)

III. \(\sqrt4\ -\sqrt3=\sqrt1\)

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Somente as afirmativas I e II são verdadeiras.

E) Somente as afirmativas II e III são verdadeiras.

Questão 6

(Cefet/RJ 2015) Considere m a média aritmética dos números 1, 2, 3, 4 e 5. Qual é a opção que mais se aproxima do resultado da expressão abaixo?

A) 1,1

B) 1,2

C) 1,3

D) 1,4

Questão 7

(IFSC 2018) Analise as afirmações seguintes:

I.  \(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

II. \(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

III. Efetuando-se \(\left(3+\sqrt5\right)\left(3-\sqrt5\right)\), obtém-se um número múltiplo de 2.

Assinale a alternativa CORRETA.

A) Todas são verdadeiras.

B) Apenas I e III são verdadeiras.

C) Todas são falsas.

D) Apenas uma das afirmações é verdadeira.

E) Apenas II e III são verdadeiras.

Questão 8

Sobre a raiz quadrada, julgue as afirmativas a seguir, utilizando V para verdadeira e F para falsa:

I. \(\sqrt{-4}=-2\)

II. \(\sqrt{2+7}=\sqrt2+\sqrt7\)

III. \(\sqrt{\sqrt{16}}\ =\ 2\)

As afirmativas são, respectivamente:

A) FFF

B) VVV

C) VFF

D) FFV

E) FVV

Questão 9

(PM Piauí 2009 Nucepe) A expressão \(\sqrt{18}+\sqrt{50}\) é equivalente a:

A) \(\ 2\sqrt2\)

B) \(\ 3\sqrt2\)

C) \(8\sqrt2\)

D) \(15\sqrt2\)

E) \(8\sqrt3\)

Questão 10

Simplificando a seguinte expressão:

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

encontramos como resultado

A) 2

B) 3

C) 4

D) 6

E) 9

Questão 11

Sabendo que os lados do seguinte retângulo foram dados em metros, a forma simplificada da área desse polígono é igual a:

A) \(5\sqrt6\) m

B) \(10\sqrt6\) m

C) \(6\sqrt5\) m

D) \(5\sqrt2\) m

E) \(\ 4\sqrt{10}\) m

Questão 12

(UFPI) Desenvolvendo a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

Encontramos um número no formato:

\(a+b\sqrt[2]{3}\)

Com a e b inteiros. O valor de a + b é:

A) 59

B) 47

C) 41

D) 57

E) 1

Resposta - Questão 1

Alternativa C

Realizando a fatoração de 2304:

2304\(2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2\)

Portanto:

\(\sqrt{2304}=\sqrt{2^2\cdot2^2\cdot2^2\cdot2^2\cdot3^2}=2\cdot2\cdot2\cdot2\cdot3=48\)

Resposta - Questão 2

Alternativa E

Para encontrar a medida do lado da região que possui formato de quadrado, basta calcularmos a raiz quadrada de 729.

Logo, temos que:

\(729=3^2\cdot3^2\cdot3^2\)

\(\sqrt{729}=\sqrt{3^2\cdot3^2\cdot3^2}=3\cdot3\cdot3=\ 27\ m\)

Resposta - Questão 3

Alternativa B

Calculando cada uma das raízes quadradas:

\(\sqrt9+4-15+12\)

\(3\ +\ 4\ -\ 15\ +\ 12\)

\(4\ \)

Resposta - Questão 4

Alternativa C

Sabemos que:

\(18=3^2\cdot2\)

\(72=2^2\cdot2\cdot3^2\)

Logo, temos que:

\(\sqrt{18}=\sqrt{3^2\cdot2}=3\sqrt2\)

\(\sqrt{72}=\sqrt{2^2\cdot2\cdot3}=2\cdot3\sqrt2=6\sqrt2\)

Portanto, o perímetro desse retângulo é igual a:

\(P=2\left(3\sqrt2+6\sqrt2\right)\)

\(P=2\cdot9\sqrt2\)

\(P=18\sqrt2\)

Resposta - Questão 5

Alternativa A

I. Verdadeira

Uma das propriedades da raiz quadrada é que podemos multiplicar o radicando, como foi feito. Logo, temos que:

\(\sqrt4\cdot\sqrt5=\sqrt{4\cdot5}=\sqrt{20}\)

II. Falsa

A soma de duas raízes gera resultado diferente da soma dos radicandos. Assim, não podemos somá-los.

III. Falsa

A diferença de duas raízes não é igual à diferença dos seus radicandos, logo, essa não é uma propriedade da raiz quadrada.

Resposta - Questão 6

Alternativa D

De início, calcularemos a média aritmética entre 1, 2, 3, 4 e 5:

\(m=\frac{1+2+3+4+5}{5}\)

\(m=\frac{15}{5}\)

\(m\ =\ 3\)

Substituindo m = 1 na expressão:

\(\sqrt{\frac{\left(1-3\right)^2+\left(2-3\right)^2+\left(3-3\right)^2+\left(4-3\right)^2+\left(5-3\right)^2}{5}}\)

\(\sqrt{\frac{\left(-2\right)^2+\left(-1\right)^2+0^2+1^2+2^2}{5}}\)

\(\sqrt{\frac{4+1+0+1+4}{5}}\)

\(\sqrt{\frac{10}{5}}\)

\(\sqrt2\ \approx1,4\)

Resposta - Questão 7

Alternativa B

I. Verdadeira

\(-5^2-\sqrt{16}\bullet\left(-10\right)\div\left(\sqrt5\right)^2=-17\)

\(-25-4\bullet\left(-10\right)\div5=-17\)

\(-25\ +\ 40\ \div\ 5\ =\ -17\)

\(-25\ +\ 8\ =\ -17\)

\(-17\ =\ -17\)

II. Falsa

\(35\div\left(3+\sqrt{81}-2^3+1\right)\times2=10\)

\(35\div\left(3+9-8+1\right)\times2=10\)

\(35\ \div\ 5\ \times\ 2\ =10\)

\(7\ \times\ 2\ =10\)

\(14\ =10\ \)

III. Verdadeira

\(\left(3+\sqrt5\right)\left(3-\sqrt5\right)=3^2-\sqrt{5^2}\ =\ 9\ -\ 5\ =\ 4\)

Resposta - Questão 8

Alternativa D

I. Falsa

Não há raiz quadrada de números negativos.

II. Falsa

Sabemos que 2 + 7 = 9 e que \(\sqrt9=3\). Por outro lado, \(\sqrt2+\sqrt7\ \) é diferente de 3, logo, essa não é uma propriedade possível para a radiciação.

III. Verdadeira

\(\sqrt{\sqrt{16}}=\sqrt4=2\)

Resposta - Questão 9

Alternativa C

Simplificando, temos que:

\(\sqrt{18}+\sqrt{50}\)

\(\sqrt{2\cdot9}+\sqrt{2\cdot25}\)

\(3\sqrt2+5\sqrt2\)

\(8\sqrt2\)

Resposta - Questão 10

Alternativa B

\(\sqrt{4\ -\ \sqrt5}\ \cdot\sqrt{4+\sqrt5}\)

\(\sqrt{\left(4-\sqrt5\right)\cdot\left(4+\sqrt5\right)}\)

\(\sqrt{4^2-\sqrt{5^2}}\)

\(\sqrt{16-5}\)

\(3\)

Resposta - Questão 11

Alternativa B

Sabemos que a área do retângulo é igual ao produto da base pela altura:

\(A=\sqrt{30}\cdot\sqrt{20}\)

\(A=\sqrt{30\cdot20}\)

\(A\ =\ \sqrt{\left(3\cdot5\cdot2\right)\cdot\left(2^2\cdot5\right)}\)

\(A=\sqrt{3\cdot2\cdot2^2\cdot5^2}\)

\(A=2\cdot5\sqrt{3\cdot2}\)

\(A=10\sqrt{6\ }\)

Resposta - Questão 12

Alternativa C

Simplificando a expressão:

\(\left(\sqrt[2]{27}+\sqrt[2]{3}-1\right)^2\)

\(\left(\sqrt[2]{3\cdot3^2}+\sqrt[2]{3}-1\right)^2\)

\(\left(3\sqrt[2]{3}+\sqrt[2]{3}-1\right)^2\)

\(\left(4\sqrt[2]{3}-1\right)^2\)

Calculando o quadrado da diferença:

\(16\cdot3-2\cdot4\sqrt[2]{3}+1^2\)

\(48-8\sqrt[2]{3}+1\)

\(49-8\sqrt[2]{3}\)

Se a = 49 e b = – 8, então:

a + b = 49 – 8 = 41