Quando a raiz quadrada não existe na formula de baskara

Toda equação do segundo grau pode ser escrita na forma ax2 + bx + c = 0, em que a, b e c são números reais chamados de coeficientes e x é um número real desconhecido chamado de incógnita. Para resolver esse tipo de equação, isto é, para encontrar os valores de x, um dos métodos mais usados é a fórmula de Bháskara. A primeira etapa do cálculo dos valores de x, por meio da fórmula de Bháskara, é encontrar o discriminante da equação.

O discriminante é a parte da fórmula de Bháskara que está sob a raiz quadrada e é apresentado pela seguinte fórmula.

Δ = b2 – 4ac

Nessa fórmula, a, b e c são os coeficientes da equação do segundo grau. A letra grega Δ (delta) é usada para representar o discriminante de uma equação do segundo grau.

O segundo passo para a resolução de uma equação do segundo grau é utilizar a fórmula de Bháskara:

x = – b ± √Δ
           2a

Existem outras aplicações para os discriminantes dentro das equações e funções do segundo grau que serão discutidos a seguir.

Quantidade de soluções reais

Para saber se uma equação do segundo grau possui resultados reais distintos, apenas uma solução real ou nenhuma, não é necessário resolvê-la até o ponto de encontrar suas soluções. É possível descobrir a quantidade de raízes reais de uma equação do segundo grau somente observando seu discriminante.

Para isso, observe o seguinte: na fórmula de Bháskara, há um sinal “±” antes da raiz do discriminante. Isso significa que essa raiz terá um resultado positivo e um negativo. Entretanto, não é possível encontrar raízes de números negativos. Assim, podemos fazer a seguinte análise:

1 – Se o discriminante for negativo, não é possível calcular sua raiz e, portanto, não é possível resolver a equação do segundo grau dentro do conjunto dos números rais. Em outras palavras:

Se Δ < 0, então a equação não possui raízes reais.

2 – Se o discriminante for igual a zero, com a parcela ± √Δ = 0, resta para solução da equação o resultado único – b/2a. Em outras palavras:

Se Δ = 0, então a equação possui uma raiz real.

3 – Se o discriminante é maior que zero, é o caso em que a equação do segundo grau possui duas raízes reais e distintas. Em outras palavras:

Se Δ > 0, então a equação possui duas raízes reais.

Interpretando funções do segundo grau

Para as funções do segundo grau, valem as mesmas afirmações anteriores, que são elas:

Se Δ < 0, então a equação não possui raízes reais.

Se Δ = 0, então a equação possui uma raiz real.

Se Δ > 0, então a equação possui duas raízes reais.

Entretanto, vale lembrar que as raízes de uma função do segundo grau são os pontos de encontro entre o gráfico dessa função e o eixo x do plano cartesiano. Aliando o discriminante à concavidade da parábola, podemos determinar os intervalos nos quais a função é crescente, decrescente ou nula. Isso é chamado de estudo dos sinais da função do segundo grau.

1 – A função é nula nas raízes.

2 – Se a > 0 e Δ > 0, temos uma função com dois pontos de encontro com o eixo x, que tem concavidade voltada para cima. Assim, o intervalo entre as raízes é negativo, e o intervalo fora delas é positivo.

3 – Se a < 0 e Δ > 0, temos uma função com dois pontos de encontro com o eixo x (duas raízes) e concavidade voltada para baixo. Assim, o intervalo entre as raízes é positivo e fora delas é negativo.

3 – Se a > 0 e Δ = 0, então a função possui apenas um ponto de encontro com o eixo x e concavidade voltada para cima, portanto é toda positiva, exceto na raiz, onde é neutra.

4 – Se a < 0 e Δ = 0, então a função é toda negativa, pois possui apenas um ponto de encontro com o eixo x e concavidade voltada para baixo.

5 – Se a > 0 e Δ < 0, então a função é toda positiva, pois não possui pontos de encontro com o eixo x e sua concavidade é voltada para cima.

6 – Se a < 0 e Δ < 0, a função é toda negativa, pois não possui pontos de encontro com o eixo x e sua concavidade é voltada para baixo.

If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

As equações do 2º grau são resolvidas utilizando diversas técnicas, dentre as quais, a mais cogitada é através da resolução pelo método de Bháskara, que determina as raízes da equação utilizando os seus coeficientes.

Ao resolvermos uma equação do 2º grau utilizando o método de Bháskara, respeitamos algumas condições de acordo com o valor do discriminante. Se ele for maior ou igual a zero, continuamos a resolver a equação. Caso seja menor que zero, isto é, um número negativo, dizemos que a equação não possui raízes reais, em virtude de o valor do discriminante pertencer a uma raiz. A afirmativa condiciona-se ao fato de que dentre o conjunto dos números reais, não existe raiz quadrada de números negativos. Observe a seguinte equação:

O valor do discriminante é igual a um número negativo (? = −4). Esse tipo de equação ficou por muito tempo sem resolução, pois enquadrava-se na situação da raiz quadrada de um número negativo. Somente após um longo período de pesquisas e estudos, matemáticos anunciaram a resolução com o auxílio de um número imaginário. O mesmo era representado pelo símbolo e associava seu valor a −1. Observe como representar a raiz negativa da equação anterior:

Quando a raiz quadrada não existe na formula de baskara

Dessa forma, as equações em que o valor do discriminante fosse um número negativo, seriam resolvidas aplicando as técnicas do número imaginário, obtendo assim, a raiz quadrada deste número negativo. Veja:

Quando a raiz quadrada não existe na formula de baskara

Com essa nova descoberta surgiu o conjunto dos números complexos, formados por uma parte real e outra parte imaginária. Por exemplo, as raízes da equação do 2º grau x² − 6x + 10 = 0, são x’ = 3 + i e x” = 3 − i. As raízes são números complexos onde a parte real de x’ é igual a 3 e a parte imaginária +i e a parte real de x” é 3 e a parte imaginária −i.

Exemplo

Vamos determinar as raízes da seguinte equação do 2º grau: −x² + 4x − 29 = 0.

Quando a raiz quadrada não existe na formula de baskara

As raízes da equação −x² + 4x − 29 = 0 são:

x’ = 2 − 5i
x” = 2 + 5i

Quando dizemos “raiz de uma equação”, nos referimos ao resultado final de uma equação qualquer. As equações de 1º grau (do tipo ax + b = 0, onde a e b são números reais e a≠0) possuem apenas uma raiz, um único valor para sua incógnita. As equações de 2º grau (do tipo ax² + bx + c = 0, onde a, b e c são números reais e a≠0) podem ter até duas raízes reais. O número de raízes de uma equação do 2º grau irá depender do valor do discriminante ou delta: ∆. Equações completas do 2º grau são resolvidas aplicando a fórmula de Bháskara:

Condições de existência da raiz de uma equação do 2º grau:

Nenhuma raiz real: quando delta for menor que zero. (negativo)


∆ < 0 x² - 4x + 5 = 0 ∆ = b² - 4ac ∆ = (-4)² - 4*1*5 ∆ = 16 – 20 ∆ = - 4

Uma única raiz real: quando delta for igual a zero. (nulo)


∆ = 0 4x² - 4x + 1 = 0 ∆ = b² - 4ac ∆ = (-4)² - 4*4*1 ∆ = 16 – 16 ∆ = 0

Duas raízes reais: quando delta for maior que zero. (positivo)


∆ > 0 x² - 5x + 6 = 0 ∆ = b² - 4ac ∆ = (-5)² - 4*1*6 ∆ = 25 - 24 ∆ = 1

Por Marcos Noé Graduado em Matemática

Equipe Brasil Escola


 EquaçãoMatemática - Brasil Escola

A fórmula de Bhaskara é um método resolutivo para equações do segundo grau cujo nome homenageia o grande matemático indiano que a demonstrou. Essa fórmula nada mais é do que um método para encontrar as raízes reais de uma equação do segundo grau fazendo uso apenas de seus coeficientes. Vale lembrar que coeficiente é o número que multiplica uma incógnita em uma equação.

Em sua forma original, a fórmula de Bhaskara é dada pela seguinte expressão:

Para utilizar essa fórmula, é necessário lembrar que toda equação do segundo grau deve ser escrita da seguinte maneira:

Quando a raiz quadrada não existe na formula de baskara

Equação reduzida ou normal do segundo grau

Os coeficientes dessa equação são os números que ocupam o lugar de “a”, de “b” e de “c”. Portanto, o coeficiente “a” é o número que multiplica x2; o coeficiente “b” é o número que multiplica x; e o coeficiente “c” é o número que não multiplica incógnita.

Mapa Mental: Fórmula de Bháskara

*Para baixar o mapa mental em PDF, clique aqui!

Como resolver equações do segundo grau com a fórmula de Bhaskara?

Resolver uma equação do segundo grau é encontrar os valores de x (ou da incógnita proposta) que fazem com que essa equação seja igual a zero.

O método resolutivo de Bhaskara apenas exige que o valor numérico de cada coeficiente seja substituído na fórmula de Bhaskara. Após isso, basta realizar as operações matemáticas indicadas pela fórmula para obter as raízes da equação. Contudo, esse método costuma ser dividido em três etapas para facilitar a compreensão por parte dos alunos.

Etapa 1: Calcular discriminante

Discriminante é a expressão presente dentro da raiz na fórmula de Bhaskara. É comumente representado pela letra grega Δ (Delta) e recebe esse nome pelo fato de discriminar os resultados de uma equação da seguinte maneira:

Δ < 0, então a equação não possui resultados reais;

Δ = 0, então a equação possui apenas um resultado real ou possui dois resultados iguais (essas duas afirmações são equivalentes);

Δ > 0, então a equação possui dois resultados distintos reais.

Portanto, para calcular as raízes de uma equação do segundo grau, primeiramente calcule o valor numérico de Δ.

Etapa 2: Substitua discriminante e coeficientes na fórmula de Bhaskara

Geralmente a fórmula de Bhaskara é ensinada apenas da seguinte maneira:

Nessa etapa, basta substituir os valores de Δ e dos coeficientes da equação do segundo grau na fórmula acima.

Etapa 3: Calcule as raízes da equação

Para essa última etapa, note na fórmula de Bhaskara que existe um sinal “±”. Esse sinal indica que devem ser realizados dois cálculos. O primeiro para o caso em que o número que o segue seja positivo e o segundo para o caso em que o número que o segue seja negativo.

É comum nomear cada um desses resultados como x' e x'' ou x1 e x2. Observe:

Quando a raiz quadrada não existe na formula de baskara

X' e x'' são as raízes da equação do segundo grau pela fórmula de Bhaskara


Exemplos

Exemplo 1 – Calcule as raízes da equação x2 + 12x – 13 = 0.

Utilizando a fórmula de Bhaskara, separe os coeficientes da equação e realize o primeiro passo.

a = 1, b = 12 e c = – 13

Δ = b2 – 4ac

Δ = 122 – 4·1·(– 13)

Δ = 144 + 52

Δ = 196

Tendo em mãos o valor de Δ, realize o segundo passo:

x = – b ± √Δ
      2·a

x = – 12 ± √196
      2·1

x = – 12 ± 14
      2

Por fim, realize o terceiro passo para encontrar as raízes da equação do segundo grau.

x' = – 12 + 14
       2

x' = 2
      2

x' = 1

x'' = – 12 – 14
       2

x'' = – 26
       2

x'' = – 13

Portanto, as raízes da equação x2 + 12x – 13 = 0 são 1 e – 13.

Exemplo 2 – Calcule as raízes da equação 2x2 – 16x – 18 = 0

Utilizando a fórmula de Bhaskara, separe os coeficientes da equação e realize o primeiro passo.

a = 2, b = – 16 e c = – 18

Δ = b2 – 4ac

Δ = (– 16)2 – 4·2·(– 18)

Δ = 256 + 144

Δ = 400

Tendo em mãos o valor de Δ, realize o segundo passo:

x = – b ± √Δ
      2·a

x = – (– 16) ± √400
      2·2

x = 16 ± 20
    4

Por fim, realize o terceiro passo para encontrar as raízes da equação do segundo grau:

x' = 16 + 20
      4

x' = 36
      4

x' = 9

x'' = 16 – 20
      4

x'' = – 4
       4

x'' = – 1

Portanto, as raízes da equação 2x2 – 16x – 18 = 0 são 9 e – 1. Por Luiz Paulo Moreira

Graduado em Matemática